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EXECUTIVE SUMMARY 

A total of 61 cone penetration tests were performed at 14 sites in the state of Wisconsin. Data 

reinforced conclusions from practice in Minnesota and previously performed test programs 

related to the Marquette Interchange and Mitchell interchange project that use of the CPT can be 

successful in glacial geologies. Within in this study CPTs were performed to depths in excess of 

75 feet in alluvial deposits, outwash, and lacustrine soils. Difficulties were encountered in clay 

tills and fill placed for highway structures. However, previous experience in Milwaukee by 

commercial CPT operators had success in clayey tills of eastern Wisconsin. 

CPT data are discussed in relation to: 

 soil classification 

 assessment of water flow characteristics of soils 

 assessment of compressibility of clayey soils 

 assessment of shear stiffness of clays and sands 

 assessment of undrained strength of clay soils 

 assessment of drained strength of sandy soils 

 design applications for shallow foundations, axially loaded piles, and embankments 

It is recommended to continue to perform CPTs on transportation projects in Wisconsin as a 

complement to drilling operations. Boreholes should be performed adjacent to a number of CPTs 

for each project and targeted sampling of critical and representative layers should be performed. 

Sampling and laboratory testing procedures for WisDOT projects needs to be improved such that 

consistency is observed between in-situ and laboratory test results. 
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1 Project Overview 

1.1 Introduction 

The cone penetration test (CPT) has a long history of use in geotechnical engineering. The 

mechanical version of the tool was developed in the Netherlands over 75 years ago primarily for 

efficient evaluation of the length needed for driven piles bearing in deep sand layers underlying 

thick compressible clays (Delft 1936). Due to the similarity in geometry and full displacement 

method of installation it is logical to estimate the end bearing of closed ended piles with the 

device (when accounting for differences in diameter). Further extension of the CPT to estimate 

pile shaft friction in sands was proposed by Meyerhof (1956), and shaft friction of piles in clay 

was, and is, often related to CPT cone tip resistance indirectly through undrained shear strength 

(e.g., Schmertmann 1975, Almeida et al. 1996). Major advances in speed of use, repeatability, 

and reliability in CPT measurement came with the development of the Fugro electric friction 

cone penetrometer which was in use by 1966 (Fugro 2002). The flexibility and applicability of 

cone penetration testing for geotechnical engineering has been aided by the incorporation of 

additional sensors into the device, such as pore pressure measurements during penetration 

(piezocone, CPTU, e.g., Wissa et al. 1975, Torstensson 1975), and downhole seismic 

measurements (seismic piezocone, SCPTU, e.g., Campanella et al. 1986). Figure 1.1 illustrates 

equipment, setup and procedures for piezocone penetration testing.  

In current geotechnical engineering practice, results of the electric cone and piezocone 

penetration tests are applied in a variety of applications, including (i) bridges; (ii) embankments; 

(iii) deep foundations; (iv) slopes; (v) retaining wall design (including foundations); (vi) soft soil 

delineation; (vii) earthquake site amplification and soil liquefaction; (viii) degree of soil 

improvement; (ix) excavations; and (x) subgrades (e.g., Mayne 2007). Additionally, results of 

the cone penetration test can be used to estimate a number of different soil characteristics and 

properties, including: (i) soil type and stratigraphy; (ii) effective stress friction angle of ‘sands’; 

(iii) relative density of ‘sands’; (iv) undrained shear strength of ‘clays’; (v) preconsolidation 

stress of ‘clays’; (vi) water flow characteristics (coefficient of consolidation and hydraulic 
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engineering’ projects, and has performed over 7500 cone tests since 2001 (personal 

communication Glenn Engstrom and Derrick Dasenbrock, Mn/DOT). 

The glacial geological conditions of Minnesota are similar to those of the northern and eastern 

half to ⅔ of Wisconsin, suggesting that the use of CPT may be viable for a majority of areas in 

the state. However, the underlying bedrock conditions in the two states are different in that much 

of Minnesota is underlain by shale, while Wisconsin is primarily underlain by dolomite / 

limestone. This would cause a different type of sediment / clast entrained in the till and could 

lead to differences in potential for CPT refusal if the cone encountered these clasts during 

penetration. The study proposed in this research will first work with Mn/DOT and other regional 

DOTs to build upon their experiences in implementation of cone penetration testing for 

transportation projects, and address additional issues specific to the needs of the Wisconsin 

Department of Transportation. Data collected in Wisconsin will be analyzed and discussed using 

conventional soil parameters so that practitioners are familiar with factors controlling the 

behavior of the measurements of the device, minimizing the reliance on ‘black box’ data 

processing and interpretation programs. 

1.2  Problem Statement 

WisDOT is considering the use of CPT investigations on transportation projects. The 

Department needs to learn more about the technology, its advantages and limitations, and feel 

comfortable that CPT data correlates with Wisconsin soil boring methods/information/geology 

and leads to design assumptions that are comparable to WisDOT’s current methods. 

1.3 Objectives 

It is the objective of this research project to evaluate the potential use of CPT technology for 

Wisconsin DOT projects through performance of tests around the state and comparing CPT 

results to available data. Specific objectives include: 
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 Departmental subsurface investigative methods (generally soil borings) and cone 

penetrometer findings will be compared at a number of sites with differing soils and 

geology.  

 Evaluation of design parameters will be compared. 

 Discuss advantages and limitations of CPT equipment, operations and interpretation.  

 Detailed suggestions for the application of this technology on WisDOT projects will be 

presented. 
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2 Additional Background and Previous Regional Experience 

The cone penetration test (CPT) and variants [piezocone penetration test (CPTU), seismic 

piezocone penetration test (SCPTU), resistivity cone penetration test (RCPT), etc.] have had 

successful application in geotechnical engineering for over 75 years. At present there is still a 

relatively limited application of CPT data by DOTs to design and construction of transportation 

projects in the United States. Some of the reasons / perceptions for this lack of use include (e.g., 

Mayne 2007): 

 ground conditions are too hard; 

 soil contains gravel and stones; 

 CPTs are more expensive than borings; 

 data analysis requires too much expertise; 

 practice is acceptable using SPT; 

 equipment too expensive / not available in the area. 

Many of these same obstacles exist for the glacial soil conditions of Wisconsin and need to be 

assessed. However, similar geological conditions exist in the neighboring state of Minnesota and 

their continued experience with CPTs since 2001 allows for use of CPT on more than 75% of 

Minnesota DOT (Mn/DOT) “foundations” projects. These projects include (i) bridge and culvert 

foundations; (ii) large embankment fills; (iii) buildings, towers, and other structures; (iv) slopes; 

(v) retaining wall foundations; (vi) roadway alignment and soft soil delineation; (vii) 

excavations; and (viii) sinkholes. A review of previous use of the CPT for Minnesota DOT and 

Wisconsin DOT projects is presented in this chapter. Preliminary discussion of assessed profiles 

is contained herein, with data included for supplemental analysis in later chapters. Attempts to 

obtain data from other Midwestern state DOTs (i.e., Ohio) was unsuccessful. Discussion of 

Minnesota data is largely taken from the conference paper Dasenbrock, Schneider & Mergen 

(2010). 
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2.1 Additional Background 

2.1.1 Wisconsin geology and soils 

The CPT is a method used to determine the layering and engineering properties of 

unconsolidated sediment overlying the local bedrock.  This report addresses CPT testing at 

various locations across the state of Wisconsin.  A brief discussion of Wisconsin geologic history 

is provided for a more thorough understanding of the regional soil conditions.   

In the Quaternary period, or the past 2.6 million years (International Commission on Stratigraphy 

2010), the planet has experienced fluctuations in the continental ice sheets.  The amount of ice on 

the surface of the earth has varied with climatic conditions throughout time as observed in the 

oxygen isotope records in the skeletons of sea organisms and the variation in sea-level (Lambeck 

& Chappell 2001, Lisiecki & Raymo 2005).  Currently, the planet is in an interglacial period 

where large continental ice sheets have regressed to Greenland and Antarctica.  The last glacial 

maximum occurred during the late Wisconsinan period from approximately 23,000 to 15,000 

radiocarbon years before present (Clark et al. 2009).  The extent of glacial ice coverage in 

Wisconsin is provided in Figure 2.1 (Clayton et al. 2006). Approximately 60% of Wisconsin’s 

land surface was covered by ice at some time in the past, either during the last glacial maximum 

or during a previous glacial episode.  The south west corner of the state is known as the driftless 

area, Figure 2.1. This name is derived from the lack of glacial deposits historically grouped into 

the all-encompassing term “drift”.  Figure 2.2 illustrates the expected thickness of soil over 

bedrock.  Soil thickness is also thinner in the driftless area. 

The areas covered by glaciers in the past bear distinct landforms associated with the prior 

glaciations including till plains, drumlins, moraines, eskers, outwash plains, kettle and kame 

landscapes, glacial lake plains, and ice-walled lake plains.  Areas not directly glaciated do have 

some glacially derived sediment typically in the form of loess, wind-blown silt, deposits. 

Geologists have described the different drift deposits and divided them into different groups to 

determine the chronology and extent of the fluctuations concerning the advance and retreat of 

continental glaciers in the region (Clayton and Moran 1982, Attig et al. 1985, Acomb et al. 
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Glaciers are an extremely effective agent for erosion and deposition across a landscape.  

Sediment can be entrained in two mediums within a glacial system: glacial ice or meltwater.  

These two mediums can be further classified by location within the system above the glacier, 

supraglacial, within the glacier, englacial, or below the glacier, subglacial.  Water may be present 

in all of these locations, for example, meltwater flowing on top of a glacier due to surface melt 

may become englacial if it encounters a crevasse, or crack in the glacier, whereby it flows down 

to a subglacial stream or lake.   

Sediment may be entrained by falling on top of a glacier by debris flows in areas of high relief or 

be frozen into the ice at the base of a glacier, and moved in the direction of glacier movement.  

The weight of the overlying ice produces a large shear stress on the subglacial bed allowing for 

significant erosion and deformation to occur in the underlying material where glaciers are not 

frozen to the bed.  

The glacial ice releases entrained sediment when it melts, where the sediment may be reworked 

and transported by the glaciofluvial system or be deposited in place.  In this document till refers 

to sediment directly deposited by the ice and typically is not sorted. Till is broadly classified into 

two groups.  Basal till is deposited at the base of a glacier and can be associated with frictional 

forces lodging the sediment in place and in cases melting and refreezing of basal ice.  These 

deposits are also referred to as lodgement tills.  The second group of till is deposited at the 

margin ice and typically does not have any overburden when deposited and is referred to as 

meltout till.  Meltout till is composed of supra-, en-, and subglacial sediment. 

Glacial sediment transported and deposited by water within the system is typically sorted, poorly 

graded, and bedded.  These deposits may occur supra-, en-, and subglacially, but typically only 

the subglacial deposits and landforms are preserved.  Subglacial deposits are typically in the 

form of melt water channels where rivers of meltwater flowing at the base of a glacier have 

deposited beds of stream deposits or scoured out channels into the basal sediment.  Most of the 

lasting deposition of glacial meltwater is observed in the proglacial area, in front of the glacier 

terminus, where large glacial lakes and outwash plains form. 
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The first division is non-glacial residual soils or colluvium.  The colluvium group represents 

residual soils that developed in place by weathering of the underlying bedrock.  This unit occurs 

primarily in the driftless area.  These soils typically overly a shallow bedrock and are composed 

of clay to boulder sized material.  The landscape of the driftless area is characterized by hill and 

steep valleys where streams have incised into the bedrock surface.  Many of the soil deposits are 

the result of debris flows and rock falls from the slopes.   

Included in the non glacial soils are the alluvial deposits which represent recent stream deposits 

placed after glaciers retreated from the region.  These deposits are mostly found along the major 

streams and rivers in the driftless area.  The soils in the alluvial deposits are composed of clays 

to gravel deposits representing overbank deposits, point bars, and abandoned channels.  

Typically the soils in this category are primarily classified as sands from an engineering 

standpoint.  

Outwash deposits form proglacially where meltwater streams transport and deposit glacial 

sediment.  These deposits occur well dispersed throughout the state as a result of deposition in 

front of the retreating glacial front.  The soils in outwash deposits are silt to gravel sized particles 

typically deposited in sorted, bedded, braided stream networks.  Also included in this group are 

the ice contact sands and gravels which are a form of meltout till.  Although the original map 

classification indicates transport solely by ice, the engineering behavior should be similar and 

therefore was grouped with the outwash deposits.   

Aeolian deposits representing loess and sand dunes that formed from wind re-working glacial 

deposits.  Local aeolian deposits occur throughout the mapped area in thin coverings, but they 

were not separated out when the regional maps were created.  Thick sequences, >5m thick, were 

not mapped within the state and therefore this unit is not observed in Figure 2.3.   

Till was mapped in the USGS sources as basal till, moraines, or undifferentiated and was 

typically grouped as loamy, sandy, or clayey.  From an engineering standpoint, interest in the 

behavior of the till matrix will govern the behavior of the soil.  The maps generated in this study 

divided the tills into two groups: loamy and clayey.  Sandy tills were incorporated with the 
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loamy tills.  These till descriptions are very generalized and it must be understood that the grain 

size distributions and descriptions are generated using the United States Department of 

Agriculture (USDA) soil classification system percent silt, clay, and sand are compared.  It is 

also important to note that the tills were typically described with two grain sizes identified, for 

example a loamy clayey till.  It was assumed that there are no single modal grain size tills.  This 

assumption was taken further as an indication of water flow characteristics.  Specifically, that 

any clayey till would for the most part have a low hydraulic conductivity and display undrained 

behavior and loamy-sandy tills would possess medium to high hydraulic conductivities and 

behave partially drained to drained.  

The distributions of the two till units indicate that the loamy tills cover much more area of the 

state than clayey tills.  The low occurrence of clayey tills relates back to the concept that a 

glacier cannot produce clay because no significant chemical weathering occurs when particles 

are entrained in ice.  These clayey tills also occur above previously deposited tills, and therefore 

reflect further transport and reworking of entrained sediment from the pre-existing tills.  The 

clayey tills occur mainly along the eastern shore of Lake Michigan and correlate with an 

interstadial period where the glaciers receded northward out of the Great Lake basins prior to re-

advancing.  When the glaciers receded northward, clayey sediment was deposited in Lake 

Michigan.  During the re-advance, this clay was entrained in the glacial ice and deposited in the 

till associated with that advance.   

The lake deposits represent depositional facies related to glacial lakes.  These deposits are well 

distributed in the central and eastern-central portions of  the state where glacial lakes Wisconsin 

(Attig and Knox 2008) and Oshkosh (Hooyer 2007) have been identified.  The large extent of 

these lakes is indicative of how large the impact of ice sheet loading is on crustal deformation.  

Note that these deposits show the extents over time and are not meant to suggest that both lakes 

were that size concurrently.  Typical soils associated with the lake deposits are clays, silts and 

sands representing subaqueous stream fans and deltas, and fine grained deposits related to release 

of suspended sediment load in low energy environments. Occasional drop stones of gravel to 

boulder size can be found which represent deposition of sediment from melting ice blocks that 

calved and floated from the ice margin.  These deposits are primarily composed of silts and clays 
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The swamp and peat deposits are closely associated with the lake deposits from a formation 

standpoint. The deposits can be associated with the glacial lake deposits or occur as standalone 

features where either large stagnant ice blocks formed a low area for water to collect or 

meltwater collected in a natural topographic low.  These deposits are composed of fine grained 

silts and clays with high organic contents with anticipated low strengths and high 

compressibilities.  These soils make up a small portion of the mapped areas; however, this may 

be a function of the scale of the mapping.   

2.1.2 Fundamentals of soil behavior 

Soil behavior is typically analyzed as a continuum, and interpretation and application revolves 

around 5 primary characteristics: 

 Water flow characteristics – rate at which water moves through a soil matrix as a function 

of a hydraulic gradient and/or change in volume 

 Compressibility – change in volume due to a change in effective stress (i.e., change in 

size of a soil element) 

 Shear Stiffness – resistance to shear distortions that result from shear stresses (i.e., 

change is shape of a soil element) 

 Strength – ultimate resistance to shear stresses 

 Dilation – change in volume due to shear deformations (i.e., change in size due to change 

in shape) 

Interpretation of soil behavior is largely influenced by the rate of loading as compared to the rate 

of water flow through the soil. If a soil is loaded slowly as compared to how fast water flows 

through the soil (e.g., loading of saturated sand), no excess water pressure builds up and changes 

in total stress are equal to changes in effective stress. This is referred to as drained loading. 

Increases in effective stress lead to increases in strength of the soil, and dilation of soil particles 

affect the geometry of a failure surface and changes in effective stress during loading. If a soil is 

loaded rapidly compared to how fast water can flow through the pores (e.g., loading of saturated 

clays), strength is generally controlled by short term loading prior to increases in effective stress, 

while a majority of deformations are time dependent, provided that a shear failure does not 



 

occur. Th

response

Figure 2.4.
 = total st
 
Water fl

coefficien

flow path

path whic

his situation 

. 

. Influence of l
tress, s = shear

low characte

nt of consol

hs. The relat

ch is more a

is referred t

loading rate on
r strain, u = po

eristics are 

lidation (cv 

ionship betw

applicable to 

to as undrain

n changes in ef
ore water pressu

quantified 

or ch). The 

ween the hyd

cone penetr

14 

ned loading.

ffective stress a
ure, ' = effect

by the hyd

subscripts a

draulic condu

ration testing

. Figure 2.4 

and volume du
tive stress, v =

draulic cond

account for v

uctivity, in t

g, and the co

illustrates ra

 
uring loading (a
= volumetric st

ductivity (kv

vertical (v) 

this case for 

oefficient of 

ate effects on

after Atkinson 
train 

v or kh) and

or horizonta

a horizontal

consolidatio

n soil 

2007) 

d the 

al (h) 

l flow 

on is: 



 

w

h
h

k
c




Where D

coefficien

respectiv

is the ini

shown in

Figure 2.5.
 

Compres

strains ar

laborator

previousl

h

h

w m

kD






D is the con

nt of volum

vely, 'h,avg is

tial in-situ v

n Figure 2.5. 

. Relationship b

ssion of soils

re equal to z

ry compress

ly compresse

h

w

k

 




435.0

1

strained mo

me change, C

s the average

void ratio. A

between soil ty

s is typically

zero and ax

sion curves 

ed, the 1D so


RC

avh

CC

e







 ' ,0

odulus, w is

Cc and Cr a

e horizontal 

A relationship

ype and water f

y defined ba

ial strain eq

for two un

oil compress

15 

w

vg



s the unit w

are the 1D c

effective str

p between w

flow characteri

ased on the o

quals volume

nstructured 

sibility is de

weight of wa

compression

ress during t

water flow ch

istics (after Sa

one dimensi

etric strain.

clays. For 

efined using t

ater, mh is th

n and recom

the loading i

haracteristic

algado 2008) 

ional (1D) c

Figure 2.6 i

soils which

the compres

(2

he horizonta

mpression ind

increment, a

cs and soil ty

case where la

illustrates ty

h have not 

ssion index (

.1) 

al 1D 

dices, 

and e0 

ype is 

 

ateral 

ypical 

been 

(Cc): 



16 
 















iv

fv
c

e
C

,

,

'

'
log





 (2.2) 

Where 'v,f is the final vertical effective stress and 'v,i is the initial vertical effective stress, and 

e is the change in void ratio for that change in effective stress. Likewise, below the maximum 

previous effective stress that a soil has been loaded to, or a vertical effective yield stress that has 

resulted from ageing or cementation, the recompression index (Cr) is defined as:
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Use of Cc and Cr indicate that as effective stress increases, compressibility decreases. The 1D 

coefficient of volume change, mv = a/'v, is the inverse of the 1D constrained modulus, D = 

1/mv = 'v/a. The relationship between constrain modulus and coefficient of compression for 

normally consolidated soil is: 
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Constrained modulus, the inverse of compressibility, tends to increase with effective stress. For 

overconsolidated soils, constrained modulus is related to the recompression index. 
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This equation would also result in the constrained modulus in the overconsolidated region 

increasing (essentially linearly) with increasing effective stress. However, it is common to 

assume that constrained modulus is constant within the overconsolidated region (e.g., Janbu 
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shear stress the soil can resist) is a function of the friction angle () and the effective normal 

stress on the failure plane ('n, Figure 2.9a): 

 tan'nf 
 (2.8) 

When the major ('1) and minor ('3) principal effective stresses, or the mean effective stress [s' 

= (1' + 3') / 2], is known, the shear stress at failure is: 

 



 sin'sin

2

'' 31 


 sf  (2.9) 

For cases of rapid loading in soils with a low coefficient of consolidation (i.e., clays, typ.), the 

changes in total stress are essentially equal to changes in pore pressure. The mean octahedral 

effective stress does not significantly change and soil strength is more reliably evaluated using 

the undrained shear strength (su, Figure 2.9b): 

uf s  (2.10) 

The undrained shear strength is sometimes referred to as the undrained cohesion, cu, however, 

this terminology does not reflect the mechanical behavior and will not be used further in this 

report. The undrained shear strength in Figure 2.9b is shown to be independent of total stress. 

This is not because the friction angle is zero, but it is that the mean octahedral effective stress 

does not change during shearing (uoct), and therefore the strength (or state / OCR) does not 

immediately change due to application of a load.  

Shearing of the soil induces changes in pore pressures and effective stress, resulting from the 

potential for a soil to contract or dilate. The normalized undrained shear strength (su/'v0) must be 

modified to account for the soil state. The soil state is most commonly assessed using the 

overconcolidation ratio (OCR = p'c/'v0, where p'c is the preconsolidation stress). The 
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Table 2.1. Comparison of normally consolidated undrained shear strength ratio for typical and varved clays (after 
Ladd & DeGroot 2003). 

Test Typical (su/'vo)NC Varved Clay (su/'vo)NC 
DeGroot & Lutenegger (2003) 

CK0UC 0.33 0.25 

DSS 0.20 0.18 

CKoUE 0.16 0.21 

VST 0.21 0.21 

  

The dilation angle quantifies the change in volume due to shearing of a soil specimen. These 

volume changes, or the tendency for volume change to occur, results in peak friction angles for 

sands and the influence of overconsolidation ratio of undrained strength for clays (e.g., Eq. 2.11). 

Since dilation decreases as mean effective stress at failure increases (e.g., Bolton 1986), 

understanding dilation is of paramount importance for estimating operational friction angle in 

sandy soils. 

Peak friction angle ('pk) under drained conditions results from friction ('cv) and dilation () 

(Bolton 1986): 

 8.0 cvcvpk  (2.12)
 

For conditions of triaxial compression (Bolton 1986): 

RDI3  (2.13) 

For conditions of plane strain (Bolton 1986): 

RDI5  (2.14) 

The parameter IRD is a relative density index that is a function of relative density (DR) and mean 

effective stress at failure [p'f = ('1+'2+'3)/3]. IRD increases with relative density and decreases 

with mean effective stress at failure (Bolton 1986): 
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 penetration pore pressure measured at the cone shoulder, u2 

Cone tip resistance is influenced by the geometry of a specific cone penetrometer. The corrected 

cone tip resistance needs to be used for all analyses such that uncertainty in comparison to 

previous studies and theoretical analysis is minimized. The corrected cone tip resistance is 

expressed as: 

 cone tip resistance corrected for pore pressure effects, qt = qc + (1-an)u2 

where an is the net area ratio of the penetrometer that typically varies between 0.5 and 0.95 

(Lunne et al. 1986, Lunne et al. 1997). To account for initial in-situ conditions on CPT 

measurements, the following derived parameters are often used: 

 net cone tip resistance, qcnet = qt – v0 

 excess penetration pore pressure, u2 = u2 – u0 

 effective cone tip resistance, qE = qt – u2 

For the above derived parameters v0 is the total stress at a given depth prior to penetration, and 

u0 is the in-situ pore pressure at a given depth prior to penetration. 

Since soil mechanical properties are controlled by initial effective stress and changes in effective 

stress during loading, rational interpretation of CPT measurements requires normalization by 

some measure of effective stress (e.g., Wroth 1984, 1988). For soil classification based on 

normalized piezocone parameters, a combination of two of the seven following parameters is 

typically used (e.g., Douglas & Olsen 1981,Wroth 1984, Wroth 1988, Robertson 1990, Olsen & 

Mitchell 1995, Robertson & Wride 1998, Jefferies & Been 2006, Schneider et al. 2008, 

Robertson 2010): 

 normalized cone tip resistance, Q = qcnet/'v0 

 modified normalized cone tip resistance, Qtn = (qcnet/pref)/('v0/pref)
n 

 normalized effective cone tip resistance, QE = (qt-u2)/'v0 
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 friction ratio, F (%) = fs/qcnet·100 

 normalized sleeve friction, fs/'v0 

 pore pressure parameter, Bq = u2/qcnet 

 normalized excess penetration pore pressure, u2/'v0 

While the initial horizontal effective stress or preconsolidation stress may be more appropriate 

for normalization (e.g., Mayne 1986, Houlsby 1988, Houlsby & Hitchman 1988, Been & 

Jefferies 2006), the in-situ vertical effective stress is used for the above mentioned normalized 

parameters as it can be calculated without significant additional analyses. For initial 

classification purposes, it is preferred to use Q rather than Qtn. Q is equal to Qtn for a stress 

exponent (n) equal to unity, and therefore does not require iteration in its interpretation (i.e., is 

easier to use). Additionally, no significant advantages have been observed when using Qtn over Q 

for classification purposes (e.g., Schneider et al. 2008), and use of Q allows for plotting data in a 

variety of different frameworks to highlight different responses. Plotting Q vs. Bq or Q vs. 

u2/'v0 are analogous since Q·Bq = u2/'v0 . Likewise, plotting Q vs. F or Q vs. fs/'v0 are 

analogous since Q·F = fs/'v0. Each plotting format has advantages and disadvantages for 

highlighting aspects of soil behavior. 

As mentioned in the previous section, soil strength and stiffness generally increase with effective 

stress, but this relationship is also influenced by the effective stress loading history of a soil 

element and/or crushable nature of the soil grains, herein discusses as ‘state.’ Undrained 

behavior in clay soils is used as an example to illustrate the influence of state on normalized 

response. If we assume that soil undrained strength (su) is the primary factor controlling cone tip 

resistance, qt, a direct relationship between the two properties would exist (through a ‘bearing 

capacity’, or cone, factor, Nkt): 

ktucnet Nsq   (2.16) 

For a constant Nkt, the normalized cone tip resistance would therefore be equal to: 
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kt
v

u N
s

Q 
0'  (2.17)

 

For normally consolidated clays that have not been previously loaded (or aged), su/'v0 is 

typically taken as a constant [i.e., (su/'v0)NC], and therefore Q is a constant value (generally 

around 3 to 5).  Q is essentially constant in normally consolidated clays and as the 

overconsolidation ratio (OCR) increases Q will also increase:  

kt
NCv

u NOCR
s

Q 







 

0'
 (2.18)

 

Figure 2.11 shows normalized cone tip resistance in normally consolidated and an 

overconsolidated clay. 

When evaluating specific engineering behavior, such as friction angle, relative density, 

liquefaction resistance, Q may not be the most appropriate normalizing parameter, and Qtn is 

often used. Observations of stress exponents less than unity are largely influenced by stress 

dependency on dilation angle and crushability of sands at high stresses (e.g., Bolton 1986, 

Salgado et al. 1997, Olsen & Mitchell 1995, Moss et al. 2006). Figure 2.12 illustrates normalized 

cone tip resistance in loose and dense sands. At shallow depths Q in both drained sands and 

undrained clays may exceed 20 and approach 1000. 

 



 

Figure 2.1
Amundsen

Figure 2.12

11. Normalized
n et al. 1985, Li

2. Normalized 

d cone tip re
iao et al. 2010)

cone tip resista

sistance in no
) 

ance in loose a

27 

ormally conso

and very dense 

olidated and o

 sands (after S

overconsolidate

chneider et al. 

ed clays (data

2008)  

 
a from 

 



28 
 

2.2 Minnesota DOT (after Dasenbrock, Schneider & Mergen 2010) 

Since 2001 the Minnesota DOT (Mn/DOT) has performed over 7500 CPTs in glacial geological 

conditions. Despite these conditions often being considered as difficult ground for this technique, 

Mn/DOT uses the CPT on more than 75% of their “foundations” projects. Over 400 of those 

CPTs from 21 sites are assessed herein. 

Boring logs and electronic CPT data have been made available through Mn/DOT are included as 

electronic files on the ArcGIS database complied for this project. Additional site information can 

be found through the Mn/DOT Geotechnical Investigation Information Interchange Internet 

Interface (GI5) (e.g., Dasenbrock 2008): 

http://www.mrr.dot.state.mn.us/geotechnical/foundations/Gis/gi5_splash.html 

2.2.1 Procedures and cone performance 

To minimize the potential for cone damage and ensure collection of high quality data, Mn/DOT 

has adopted standard procedures for test preparation, performance, and data recording (e.g., 

Lunne et al. 1997). Mn/DOT has 3 CPT rigs in year round operation; a 11 ton tracked rig, a 13 

ton 4x4 truck, and a 30 ton 6x6 truck. Many projects require only shallow exploration, and 

investigations are performed to depths of 30 ft to 50 ft. For bridges, explorations in excess of 100 

ft are often required. Hole sealing procedures for depths in excess of 50 ft require grouting from 

the bottom of the hole during cone extraction. For these projects Mn/DOT utilizes a standard 

setup for grouting during cone extraction, which is semi-automated on the 30 ton truck. 

Both 10 cm2 (1.44 inch diameter) and 15 cm2 (1.72 inch diameter) cones are used; the two truck 

rigs typically use the larger diameter cones. Mn/DOT keeps approximately 15 ‘service ready 

cones’ on hand (distributed among the 3 rigs and the lab) at any given time. Calibrations are 

performed by the penetrometer manufacturer and occur annually or at the time of a cone repair. 

The net area ratio (an) used for correction of the tip resistance for pore pressure effects is 0.8, as 

provided by the cone manufacturer. Due to hard ground conditions or obstructions, 

approximately one cone is broken per year. Additionally, approximately every 1.5 months, an in-
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service cone will need to be repaired. These repairs are usually for a bad channel (e.g. pore 

pressure), bending or crushing of the sleeve or probe housing, or water damage due to an issue 

with one of the seals. To minimize cone damage, methods suggested by Lunne et al. (1997) have 

been adopted, namely, (i) keeping the inclination less than 10o, particularly for shallow holes; (ii) 

minimizing total force applied to dense soils underlying thick zones of very soft material, such as 

peat; and (iii) having a presence of mind to realize that there may be boulders or cobbles in 

certain geological conditions, and that sharp spikes in tip resistance associated with rapid 

changes in inclination (> 1o/m push) should result in termination of a sounding. 

On projects where clay soils are present and consolidation characteristics are of interest, or 

where materials are not well defined, pore pressure dissipation test data have proved valuable on 

many Mn/DOT projects. An effort is made to ensure reliable pore pressure data; Mn/DOT 

purchases filter element from the CPT manufacturer that are pre-saturated with silicone oil. 

While the oil viscosity may result in sluggish response, it also helps reduce the likelihood that 

the system will become unsaturated. In some cases it is difficult to maintain proper saturation 

and record high quality pore pressure data through an entire layer, particularly in deposits above 

the water table, very stiff soils, or layered clays and silty sands. More detailed review of data 

quality is required when evaluating design parameters from qt and or u2 data in these situations. 

2.2.2 Geology and typical soil profiles 

The geology of Minnesota has primarily been shaped by glacial action. As a result, the state has 

highly variable deposits consisting of (i) alluvium; (ii) colluvium; (iii) glacial lake deposits; (iv) 

outwash; (v) peat; (vi) weathered bedrock; and (vii) glacial till. Initial review of single CPTs 

from 6 sites was performed for this section. The six locations include geologic conditions 

consisting of (i) till soils; (ii) lake deposits; (iii) peat; (iv) outwash; and (v) alluvium. Details on 

the project types and soil conditions are included in Figure 2.13 and Table 2.2. 
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Table 2.2. Description of initial Mn/DOT CPT sites 
UW 
Site 
No. 

Depth 
Range 

Analyzed 
(ft) 

Site Project ID: Design Issues Regional Geology Number of 
CPTs 

- 10-36 1003-28: Roadway / settlement Loamy Till 40 
8 5-50 3609-25: Roadway / bridge / geofoam Lake Clays 60 
- 5-80 1480-149: Landslide Lake Clays 13 

13 6-25 3413-22: Roadway failure / Retaining Wall Peat 149 
- 0-35 2903-10: Roadway Alignment Outwash (Sand) 20 
- 0-33 8823-01: Groundwater monitoring Alluvium (Silty Sand) 3 

 

Upon completion of a site investigation, CPT (and boring) data are processed, entered into 

project databases, and exported for use in a web enabled Geographic Information System (GIS) 

(Dasenbrock 2008). Individual vertical profiles are analyzed, and cross sections are developed 

for larger projects. Profiles of net tip resistance and friction ratio from the 6 sites are shown in 

Figure 2.14, and profiles of net tip resistance (qcnet=qt-v0) and excess pore pressure (u2=u2-u0) 

are shown in Figure 2.15. Normalized soil behavior type is used by Mn/DOT for preliminary 

evaluation of layering. Both the Robertson (1990, 1991) Q-F and Q-Bq charts have been used by 

Mn/DOT, depending upon soil layering. In sandy soils, Q-F charts are typically used, while in 

clayey soils, Q-Bq charts are typically used. Use of these charts requires selection of appropriate 

normalized parameters and requires judgment that is dependent upon data quality and design 

application. 

Since soil behavior is controlled by ‘soil state’ as well as rate of drainage (particle size), among 

other factors, Figures 2.14 and 2.15 include a trend line reflecting inferred soil state. In glacial 

deposits where the soil can often be considered preconsolidated by a vertical load (i.e., a glacier), 

the preconsolidation difference (p'c) allows for assessment of reduction in OCR (state) with 

depth in clayey soils. Assuming a constant Nk value of 15 and a normally consolidated undrained 

strength ratio [(su/'v0)NC] of 0.27 for preliminary analyses, the net cone tip resistance (qcnet = qt-

v0) can be estimated as a function p'c and 'v0. 
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Estimated values of p'c vary from 75kPa to 200 kPa for the lake deposits, and 550kPa for the 

loamy till soil shown. The peat soils have very low tip resistance, and are modeled fairly well as 

a normally consolidated deposit (p'c=0), particularly at depth. While use of p'c does not 

satisfactorily match the entire depth of each profile, it does provide an indication of soil state 

such that design issues can be addressed in a more rational framework. 

Relative density (Dr) is a useful parameter for evaluation of the anticipated behavior of sandy 

soils, and is related to soil state when combined with effective stress at failure (e.g., Figure 2.10). 

Profiles of net cone tip resistance are estimated from an inferred relative density in Figures 2.14 

and 2.15 using the following equation (e.g. updated based on Jamiolkowski et al. 2003): 

 
5.0

086.2 '
20 










 

ref

vD
refcnet p

epq r


 (2.20) 

Two extremes of sand density can be seen, with these outwash soils having a relative density on 

the order of 0.35 and these alluvial soils have a relative density near 1.0. 

2.2.3 Performance at additional sites 

Detailed evaluation of 21 sites and over 400 CPTUs was performed (Figure 2.16), as 

summarized in Tables 2.3 and 2.4, and Appendix 1 and 3. The main purpose of this exercise was 

to assess the typical geological conditions, penetration depths, and soil types in which Mn/DOT 

has had successful use of the CPT. Lateral spatial variability of cone tip resistance and friction 

ratio were quantified to see if variability had an influence of likelihood of meeting premature 

refusal when testing in a given soil environment. Borings were compared to a given CPT at 

20/21 sites. Table 2.2 summarizes typical geological environments where CPTs were performed: 

 Alluvium – 8 sites 

 Clay Till – 2 sites 

 Lake deposits – 5 sites 

 Loamy Till – 5 sites 
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Table 2.3. Summary of regional geology for Mn/DOT sites analyzed 
UW 

Site No. 
Mn/DOT 
Proj. No. 

County Regional Geology 

1 MAC Hennepin Alluvial valley of Minnesota river within outwash deposits 
2 6918-69 St. Louis Clayey till 
3 8285-80 Washington Alluvial valley of Mississippi river within outwash deposits 
4 0916-16 Carlton Alluvial valley of St. Louis river between Lake and Loamy till deposits 
5 2713-75 Hennepin Loamy till 
6 3609-30 Koochiching Alluvial valley of Little Fork river adjacent to Loamy till, Lake clays, 

and Peat 
7 8103-47 Waseca Loamy till 
8 3609-25 Koochiching Lake clay & silt adjacent to Sandy till, crossing Little Fork river 
9 1009-16 Carver Clayey till 

10 2207-32 Faribault Loamy till adjacent to Lake clays / silt (no borings) 
11 3507-12 Kittson Lake deposits adjacent to Alluvial valley of Red river 
12 7602-16 Swift Alluvial valley of the Chippewa river adjacent to Clayey and Loamy till 
13 3413-22 Kandiyohi Lake deposits within Outwash (Peat) 
14 4913-21 Morrison Alluvial valley of the Mississippi river within Outwash deposits adjacent 

to Sandy till 
15 4013-43 LeSueur Loamy till 
16 0208-123 Anoka Lake deposits within Outwash 
17 0901-74 Carlton Lake clay & silt within Outwash adjacent to Clayey till 
18 1002-79 Carver Loamy till 
19 1601-48 Cook Alluvium over Sandy / Clayey Till, Onion river at Lake Superior 
20 8580-149 Winona Alluvial valley of Mississippi river w/in Outwash adjacent to Colluvium 
21 5509-63 Olmsted Sandy Loamy till 

 
Table 2.4. Summary of CPT performance for Mn/DOT sites analyzed 
UW 
Site 
No. 

Mn/DOT 
Proj. No. 

County # 
CPTs 

Depth (ft) Median CPTU values lateral 
variability1 min median max qt 

(tsf) 
F 

(%) 
u2 

(tsf) 
1 MAC Hennepin 14 5.6 20.5 30 155 1.0 0.2 moderate 
2 6918-69 St. Louis 14 4.4 37 48 18.3 3.4 0.1 high 
3 8285-80 Washington 14 48 77 119 52.1 0.6 1.2 moderate 
4 0916-16 Carlton 2 32.6 34.5 36.4 13.5 3.9 0.2 moderate 
5 2713-75 Hennepin 7 24.8 41.3 41.2 12.2 2.0 2.3 low-mod 
6 3609-30 Koochiching 7 19.5 93.2 103.5 11.2 4.2 6.0 low 
7 8103-47 Waseca 41 11 24 44 13.7 2.6 0.4 mod-high 
8 3609-25 Koochiching 60 40 50 98 13.4 3.3 4.6 low-mod 
9 1009-16 Carver 9 9 49 50 24.1 2.6 2.3 low-mod 

10 2207-32 Faribault 33 27 48.4 49 10 4.1 1.3 high 
11 3507-12 Kittson 24 40 115 163 11.5 3.3 4.4 low 
12 7602-16 Swift 3 43 44 46 7.5 4.6 1.4 moderate 
13 3413-22 Kandiyohi 25 18 33 50 16.1 2.3 0.7 high 
14 4913-21 Morrison 6 13 23 29 91.4 0.9 0.1 low-mod 
15 4013-43 LeSueur 54 44 71.5 80 13.6 3.7 0.6 high 
16 0208-123 Anoka 13 40 49.5 50 85.0 0.7 0.3 low 
17 0901-74 Carlton 12 49 53.5 54 11.8 2.1 4.5 low 
18 1002-79 Carver 11 14 37 49 14.2 2.5 0.3 moderate 
19 1601-48 Cook 34 1.5 12 32 14.2 1.7 0 high 
20 8580-149 Winona 4 4 5 6.5 45.9 1.2 0.1 moderate 
21 5509-63 Olmsted 30 5 20 42 30.4 1.6 0.1 mod-high 

1 for lateral variability, high = a majority of depths with qt COV > 1, low = a majority of depths with qt COV ≤ 0.3, 
moderate = a majority of depths with 0.3 ≤ qt COV ≤ 1, dual symbols used for profiles with mixed variability 
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A majority of sites (16/21) had low median cone tip resistance less than 40 tsf, and moderate to 

high median friction ratios greater than 2%. This indicates predominantly clayey soils. Of the 5 

sites with sands and silty sands, 4 of them were from alluvial environments and 1 was lacustrine.  

There was little correlation between formation environment or CPT parameters and depth of 

penetration, as illustrated in Figure 2.17. This tends to occur because of the layered nature of 

soils, refusal for onshore projects is typically met when a hard layer is reached rather than an 

accumulation of frictional resistance along the cone rods. Additionally, the median depth of 

soundings for many sites was on the order of 50 ft. This is often the depth required for 

investigation, so soundings were terminated because project objectives were met rather than soil 

response. Shallower soundings with a maximum depth of 30ft were observed in some high tip 

resistance low friction ratio sandy sites, however it is possible that the soundings were also 

terminated due to project requirements rather than soil response.  

2.2.4 Summary and conclusions related to Mn/DOT data 

Mn/DOT has enjoyed successful use of CPT for projects in glacial soil conditions. Cone damage 

occurs, but breakage and complete loss of cones is relatively infrequent. Depth ranges of interest 

are typically less than 50 ft for most projects (100 ft for bridges). Within these depth ranges, 

normalized Q-F and Q-Bq soil classification charts can be used, provided engineering judgment 

is applied.  

Significantly, use of CPT on Mn/DOT projects provides the ability to collect much larger 

amounts of high quality data to develop detailed profiles of soil strength and stiffness, and 

detailed cross sections highlighting thin continuous layers, which ultimately impact design 

decisions. When designing based on limited SPT data, the stratigraphic detail (particularly the 

horizontal variation across a site) was comparatively crude and imprecise. While site 

investigations, performed now with the addition of CPT techniques, typically cost about the 

same as SPT-only based investigations, they are faster, provide significantly more data for 

assessment of variability, and the data quality is higher such that correlations to lab data can be 

relied upon with greater certainty. Two compelling observations are that (i) critical time sensitive 

investigations would have been otherwise impossible to perform without use of the CPT; and (ii) 
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on many occasions the justification for very expensive or time consuming soil improvement 

procedures, or use of additional structural systems, was made more compelling by the large 

amount of high quality soil strength data and stratigraphy inferred from the CPT. 

2.3 Wisconsin DOT 

CPT data from 2 major projects in the Milwaukee area have been evaluated: 

 Marquette Interchange 

 Mitchell Interchange 

The Marquette Interchange project included a number of CPTs in Lake clays and silts, as well as 

Clayey Tills. The soils for the Mitchell Interchange were predominantly Clayey Tills. This 

section will focus on typical characteristics of CPTs at each project, and analyses related to 

engineering parameters will be included in Chapter 5. Figure 2.18 shows locations of soundings 

for both sites on a geological map of Milwaukee county. Locations at each site are enlarged in 

Figures 2.19 and 2.20. 

Table 2.5. Summary of regional geology for previous WisDOT sites analyzed 
UW 

Site No. 
WisDOT 
Project 

County Regional Geology 

W1a Marquette Milwaukee Clayey Till and Fill 
W1b Marquette Milwaukee Lake Clays and Silts 
W2 Mitchell Milwaukee Clayey Till 

 
Table 2.6. Summary of CPT performance for previous WisDOT sites analyzed 
UW 
Site 
No. 

WisDOT 
Project 

 

County # 
CPTs 

Depth (ft) Median CPTU values lateral 
variability1 min median max qt 

(tsf) 
F 

(%) 
u2 

(tsf) 
W1a Marquette Milwaukee 23 13 41 92 38.6 2.9 0.2 high 
W1b Marquette Milwaukee 4 43 65 70 12.2 3.6 1.8 low-mod 
W2 Mitchell Milwaukee 8 18 55 61 40.2 2.8 0.1 moderate 

1 for lateral variability, high = a majority of depths with qt COV > 1, low = a majority of depths with qt COV ≤ 0.3, 
moderate = a majority of depths with 0.3 ≤ qt COV ≤ 1, dual symbols used for profiles with mixed variability 
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Cone penetration testing for the Marquette Interchange and Mitchell Interchange can be 

considered moderately successful. Median values of penetration depth were 40 to 65 ft, with 

penetrations in general being deeper in the Lake Deposits. The deepest penetration of 92 feet was 

achieved in a clayey till. Dense sands underlying the Lake Deposits resulted in a maximum 

penetration of 70 ft. Early refusal in the dense layers underlying the Lake deposits may be 

somewhat problematic from a foundation design standpoint. Cone tip resistance must be 

averaged over 8 diameters above a proposed pile tip depth and to up to 4 diameters below a 

proposed pile tip depth to account for differences in response of small diameter cones and large 

diameter piles (see section 6.2). 

It is noted that 4/27 CPTs for the Marquette interchange were identified as soft Lake deposits 

based on the results of CPT tests. Geologic maps indicated 18/27 CPTs may contain significant 

thicknesses of near surface soft Lake sediment. 

CPTs in Clayey Tills at the Marquette Interchange and Mitchell Interchange produced similar 

results, with median tip resistance values on the order of 40 tsf and median friction ratios just 

under 3. Only one CPTU collected high quality measurements of pore pressure for the Mitchell 

Interchange project (CPTU-03), and the combination of testing above the water table as well as 

interlayer sands and clays resulted in low mean pore pressures observed in the Marquette data. 
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3 Equipment and testing procedures 

3.1 Field Equipment 

CPTs were primarily performed using the University of Wisconsin-Madison’s 24 ton CPT truck, 

Figure 3.1.  The truck is a 1982 Mack RM series Hogentogler modified truck that transports the 

equipment and powers the hydraulic system.  The hydraulic system in turn powers the jacks 

mounted at the front, center, and rear of the truck.  These jacks elevate the truck to maximize the 

reaction force and to provide a level surface to advance the cone.  The two exterior jacks at the 

center of the truck, closest to the cone, are connected by a beam that provides additional stability 

where the cone is pushed into the ground.  The hydraulic system also operates the ram system 

used to advance the CPT probe, Figure 3.2.  The hydraulic ram is capable of 25 ton capacity and 

is setup with a rate control allowing advance rates from 0.004 in/sec to 4 in/sec.  The hydraulic 

pump, rams, and control equipment are located within the box compartment aft of the truck cab.   

Due to a hydraulic pump failure, an additional CPT truck was used for a portion of this study.  

The Purdue University’s CPT truck is a lighter 7-ton Hogentogler open bed truck, Figure 3.3.  

This is a smaller truck had a similar hydraulic system and control panel.  Because the dead 

weight of the vehicle is much lighter, the truck is equipped with a helical anchoring system to 

develop additional reaction force to advance the cone. 

The CPT data acquisition equipment was obtained through Vertek in the spring of 2010.  The 

data acquisition equipment is hard-wired to the CPT probe during sounding and converts the 

voltage output from the cone sensors to a digital signal which is transmitted to a conversion box 

in the cone truck.  The conversion box transforms the digital signal to engineering units based on 

a calibration factor that the field laptop can record and display real-time measurements during 

the push.  The proprietary Vertek software package displays real-time plots of cone measured 

data and records measurements for later analysis. 

The cone penetrometer probe used for testing is a Hogentogler subtraction type digital seismic 

piezocone with a 1.44 in diameter, a 1.55 in2 (10 cm2) projected tip end area, and a friction 
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oil were used during the testing program.  To saturate the pressure transducer the following 

procedure was performed: 

 Unthread cone tip and invert cone clamping to vise so that pressure transducer cavity is 

facing upward 

 Fill entire cavity with glycerin such that meniscus forms above cone body 

 Inspect cavity for small air bubbles.  If bubbles are present gently tap cone body to agitate 

bubbles to the surface 

 Using syringe fill the channel in the cone tip with glycerin allowing a bead of glycerin to 

form around the seat for the pore water pressure filter 

 Remove saturated filter from the silicone oil container and fit onto tip 

 Make sure that there is a meniscus above the cone tip and cone body prior to placing the tip 

onto the cone 

 Quickly invert the tip onto the cone to minimize the chance of air bubbles entering the tip 

and thread the tip into place.  Threading of the tip will displace the excess glycerin out of 

the cone body cavity. 

 Place a thin latex membrane filled with additional glycerin around the saturated cone 

pressure transducer and filter to reduce chance of losing saturation prior to initializing the 

sounding. 

3.4 Test Naming Convention 

Tip, friction sleeve, and pore water pressures were measured continuously for all soundings.  The 

test naming system provides insight into the configuration and data collected for each cone test.  

Most soundings are designated CPTU#-##.  The U indicates that a piezocone test was performed 

and the number directly following, for instance U2, identifies the position of the pore water filter 

element.  With the CPT probe used for this study u1 and u2 positions are possible, although u2 is 

the primary configuration used Figure 1.2.  In addition seismic piezocone tests are identified as 

SCPTU2-##.  The numbers following the cone configuration represent the test number 

performed for that study area.  In some cases a letter is designated after the cone number 

indicating that the sounding was stopped, CPT probe removed from the ground, and a new 
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sounding was started in the same location.  This process was typically performed if initial 

readings indicated poor saturation of the pore water pressure transducer or some equipment error 

was indicated.  

3.5 Supplemental Testing 

3.5.1 Drilling Operations 

Four independent borings were conducted to obtain samples for laboratory testing.  These 

borings are outlined in Table 3.1.  Nominally undisturbed tube samples were obtained at sites 

UW-1, DOT-7 and DOT-10c.  Disturbed auger samples were obtained at all locations.  Samples 

were field identified according to the procedures outlined by ASTM D 2488 by an engineer in 

the field and preserved for review and subsequent laboratory testing.  Logs for borings are 

included with site descriptions in Appendix 4. 

Table 3.1: Summary of soil borings conducted 
Site Drill Rig Depth of Sampling Sample Type 

UW-1 CME- D 120 98 ft Tube and Split Spoon 
Long-10 Hand Auger 13 ft Auger (Disturbed) 
DOT-7 Gehl Skid Steer 10 ft Tube and Auger 

DOT-10c Gehl Skid Steer 10 ft Tube and Auger 

 

3.5.2 Laboratory Testing 

At multiple study areas laboratory data was available for CPT comparison.  These data included 

DOT-1 with data provided by WisDOT, UW-1, DOT-7, and DOT-10c with laboratory testing 

conducted in the University of Wisconsin-Madison’s geotechnical laboratory.  Laboratory tests 

conducted include moisture content determination (ASTM D 2216 ), Atterberg limits (ASTM D 

4318), fall cone testing, grain size analysis using mechanical sieves and hydrometer (ASTM D 

422 and D 6913), oedometer tests (ASTM D 2435), unconsolidated undrained triaxial tests 

(ASTM D 2850) and consolidated undrained triaxial tests with pore water pressure 

measurements (ASTM D 4767). Available lab data is provided in Appendix 4.   
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3.6 CPT Study Areas 

CPT testing was performed at multiple locations across the state of Wisconsin in order to 

investigate the different soil types that are typically encountered in engineering design.  Specific 

locations were coordinated with WisDOT engineers to focus on locations with specific interest.  

Coordination with WisDOT was key because use of previous soil boring data was considered for 

subsurface interpretation. These locations were typically close to large population centers in the 

state and are therefore representative of soil conditions for many foundation design projects.  

Site selection was chiefly determined by accessibility for the CPT truck, location proximal to 

existing boring data, and site geology.  Accessibility was a top priority because most testing 

occurred on the side of the road near highway structures.  Soundings typically took at least one 

day for advance and closure operations.  When conducting dissipation testing, individual 

soundings required up to 3 days to conduct.  For these reasons finding a safe location was a 

paramount concern.  In addition to safety, slopes and ground hazards were also considered in 

evaluating accessibility.  Most testing occurred near existing highway structures so that the 

subsurface explorations for the highway structure could be used for comparison to CPT results.  

Finally, the site geology and depth to bedrock played a role in the site selection.  

The cone was advanced until one of multiple refusal criterion were met.  The term refusal is used 

to indicate a point during a sounding where it is not possible or impractical to continue  

advancing the cone deeper.  The most apparent case of refusal occurs when the resistance to 

pushing is larger than the reaction load of the vehicle.  In this case the CPT truck is lifted off of 

the ground when attempting to advance deeper and the sounding is stopped for safety reasons.  

More commonly, soundings are determined to be at refusal when large changes in inclination 

occur over short depth intervals. A high degree of inclination over a short distance stresses the 

cone and push rods that may potentially cause damage.  This condition was achieved for an 

increase of inclination over 1 degree over a depth of 1 m.   
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4 Data presentation and results 

4.1 Data presentation 

4.1.1 Graphs and Figures 

It is most common to show plots of cone tip resistance (qt), friction ratio (F=fs/qcnet %), and 

penetration pore pressure (u2) with depth for a CPT sounding (Figure 4.1, Figure 4.2). The 

estimated in-situ pore pressure, u0, is plotted on the pore pressure figure, and is typically equal to 

u2 in drained sandy soils. Scales are adjusted to encompass the most important aspects of the 

data; the sandy soils at the Mn/DOT Wakota Bridge site have a maximum tip resistance scale of 

450 tsf, while the soft lake clays at the Mn/DOT St. Vincent’s site have a maximum tip 

resistance scale that is an order of magnitude lower, at 40 tsf. 

Typical layering can be selected based on major changes in tip resistance, friction ratio, and/or 

pore pressure response. These layers can be subgrouped based on estimated formation 

environment and/or anticipated engineering response. Five major layers with up to three 

occurrences (at different vertical locations) are identified (on the pore pressure plot) in Figure 

4.1. It is evident that Layer I generally has a higher tip resistance and lower friction ratio than 

Layer II. From bearing capacity theory it is conceptually known that drained sandy soils have 

higher bearing capacity factors (Nq) than undrained clayey soils (Nc) [additionally noting that 

undrained strength is on the order of 0.25 to 1.0 times 'v0, after Ladd 1991] which is reflected in 

Figure 4.1 by higher qt values for the Layer I ‘drained’ sands than the Layer II ‘undrained’ 

clayey soils. Layer II is split into two sub layers due to variation in friction ratio as well as tip 

resistance (which is difficult to see on this linear scale). Layer III is broadly similar to Layer I in 

that it has a high cone tip resistance. Additionally, for Layer III the measured penetration pore 

pressure (u2) is increasing along the (dashed) hydrostatic (u0) line. Hydrostatic penetration pore 

pressures below the water table are also indicative of drained penetration in sandy soils. Sharp 

drops in qt are observed in Layer IV at about 55ft and 72ft, which are clear indications of 

changes in material behavior. The low tip resistance is coupled with high u2 values, indicating 

undrained behavior in a clayey soil. Two thin silty layers are observed in Layer V between 80 

and 90 ft, which are characterized by tip resistance that is slightly higher than the undrained case 
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Figure 4.6. Single vertical axis plotting for cross section development based on qt and u2 (Marquette Interchange) 

 
Figure 4.7. West-East partial cross section at the Marquette Interchange based on qt and u2 
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sounding from a given site, or grouping, as well as median values and lateral coefficient of 

variation for tip resistance and friction ratio. An example profile for Mn/DOT site 17 is shown in 

Figure 4.8. This is a relatively uniform site, in that 10 of the CPTs overlie each other with qt 

equal to the median. There is more variability in friction ratio and pore pressure, with some of 

these effects attributed to  the location of the water table. It is interesting that 2 of the CPT 

soundings have high cone tip resistance as compared to the others. As the pore pressure response 

is similar for these two soundings, the high cone tip resistance is likely due to drift or error in 

assessment of zero readings, and should be confirmed. Multiple measurements within a 

piezocone test allow for more rational quality control checks of data than single source SPT 

blowcounts. 

Many of the CPT profiles did not have data collected at uniform depths. These occurrences may 

have resulted from frequency of data recording, different depths of prebore/dummy push, or 

other factors. To create site summary plots and assessment of lateral coefficient of variation, data 

for each CPT profile needed to be interpolated to consistent depth readings. This procedure was 

checked by overlaying a non-processed sounding over the processed sounding (red line in Figure 

4.8). Levels of quality control are needed when CPT data are mass processed. 

4.1.2 Contractor Documents 

CPT data are still typically used by geotechnical engineers, rather than contractors. In Minnesota, 

consulting engineers and DOT staff have used CPT data for sizing foundations, selecting 

embedment depths of piles, delineating soft soils, etc.. Use of data by contractors was initially 

limited, but has grown over time due to increased familiarity with the testing results. No 

specialized courses were given nor was a CPT contractor manual prepared by Mn/DOT. 

Figure 4.9 gives an example of how CPT data has been included in Mn/DOT contract 

documents. The location of the CPTs is given along with a table of the maximum depth of 

penetration. Cross sections, in this case, are still based on borings and the contractor would need 

to request the geotechnical report to actually have the CPT information. As previously shown in 

Figures 4.5 and 4.7, cross sections can be modified to include CPT results. 



 

Figure 4.9.. Mn/DOT planns including CPPT information
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4.2 Results 

A total of 61 soundings at 14 sites were performed for this study, as summarized in Figure 4.15, 

Table 4.11, Table 4.12, and Appendix 2.  Eight of these soundings were probes using the dummy 

push rod, Figure 4.16, and did not result in tip, sleeve or pore-water pressure measurements.  Out 

of the 53 soundings using the CPT probe, only two did not have saturated pressure transducers, 

and 15 of the soundings included seismic shear wave velocity measurements.  The depths for all 

soundings combined to a total length of 1848 ft.  Appendix 2 provides cone profiles of measured 

parameters with comparison to WisDOT borings and individual sitemaps.  

Dissipation testing was conducted during most soundings.  A total of 320 dissipation tests were 

performed for a cumulative duration of 212 hours.  Many of these tests were short duration, less 

than 5 minutes, tests performed during rod breaks to develop a better indication of drainage 

conditions.  



 

Figure 4.155: CPT test loccations shown aagainst surficia
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Table 4.1. Summary of regional geology for WisDOT sites tested 
UW 

Site No. 
UW 

Site ID 
County Regional Geology 

T01 UW-1 Dane Lake 
T02 Long-10 Dane Outwash 
T03 Long-12 Dane Outwash 
T04 Long-13 Dane Outwash 
T05 DOT-7 Dane Outwash 
T06 Long-11 Dane Outwash 
T07 DOT-1 Brown Lake / Fill 
T08 DOT-16 Winnebago Clayey Till 
T09 DOT-10 Sheboygan Fill 
T10 DOT-10a Sheboygan Clayey Till 
T11 DOT-10b Sheboygan Clayey Till 
T12 DOT-10c Sheboygan Clayey Till 
T13 DOT-3R Sauk Alluvium 
T14 Long-8 Dane Alluvium 

 
Table 4.2. Summary of CPT performance for WisDOT sites tested 
UW 
Site 
No. 

UW 
Site ID 

County # 
CPTs1 

Depth (ft) Median CPTU values lateral 
variability2 min median max qt 

(tsf) 
F 

(%) 
u2 

(tsf) 
T01 UW-1 Dane 4 (5) 13 65 99.6 130 1.0 0.9 low 
T02 Long-10 Dane 7 26 26 89 87 1.3 0.3 low-mod 
T03 Long-12 Dane 1 - 62.8 - 128 1.4 1.0 - 
T04 Long-13 Dane 1 - 56 - 144 1.2 0.5 - 
T05 DOT-7 Dane 8 12.5 14.8 42.7 67 0.8 0.4 low 
T06 Long-11 Dane 2 23.9 53.2 38.6 177 1.0 0.1 low 
T07 DOT-1 Brown 2(5) 3.3 3.3 70 9.7 0.7 5.1 low 
T08 DOT-16 Winnebago 4 15 25 35.4 33.8 2.4 2.5 low 
T09 DOT-10 Sheboygan 0 (4) 2.5 3.2 3.9 - - - - 
T10 DOT-10a Sheboygan 2 (3) 7.6 7.7 7.9 167 0.7 0.1 mod-high 
T11 DOT-10b Sheboygan 5 5.7 12.8 24 34.4 3.4 0.6 moderate 
T12 DOT-10c Sheboygan 6 19.7 21.9 26.3 29 3.4 1.3 moderate 
T13 DOT-3R Sauk 5 73.4 73.6 78.1 142 0.7 1.1 low 
T14 Long-8 Dane 5 2 5.7 9.2 40.7 1.7 0.3 moderate 

1 number in parentheses indicates total number of cones pushed, includes dummy probes that met shallow refusal 
and erroneous CPTU1 qc and fs data from UW-1 

2 for lateral variability, high = a majority of depths with qt COV > 1, low = a majority of depths with qt COV ≤ 0.3, 
moderate = a majority of depths with 0.3 ≤ qt COV ≤ 1, dual symbols used for profiles with mixed variability 
 
Table 4.3. Summary of CPT performance for WisDOT sites tested by geology 
Regional Geology # 

CPTs1 
Depth (ft) Median CPTU values lateral 

variability2 min median max qt 
(tsf) 

F 
(%) 

u2 
(tsf) 

Fill 0 (7) 2.5 3.3 3.9 - - - - 
Lake 6 (7) 13.1 65.3 99.6 60.1 1.0 1.6 high 
Alluvium 10 2 41.3 78.1 141 0.7 1.0 high 
Outwash 19 12.5 26.3 88.8 102.6 1.2 0.4 moderate 
Clayey Till 17 (18) 5.7 19.4 35.4 32.3 2.9 1.1 low-mod 
1 number in parentheses indicates total number of cones pushed, includes dummy probes that met shallow refusal 
and erroneous CPTU1 qc and fs data from UW-1 

2 for lateral variability, high = a majority of depths with qt COV > 1, low = a majority of depths with qt COV ≤ 0.3, 
moderate = a majority of depths with 0.3 ≤ qt COV ≤ 1, dual symbols used for profiles with mixed variability 
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Good success was achieved in Lake, Alluvium, and Outwash conditions, with maximum 

penetration depths exceeding 75 feet in each geological condition. Data from Long-8 near the 

Wisconsin river are grouped with the Alluvial deposits from site DOT-3R. Good performance 

was achieved at site DOT-3R, with a median penetration of 74 feet, but the maximum 

penetration at site Long-8 was less than 10 feet. The Long-8 site may have had geological 

conditions more similar to a loamy till than alluvium. The clayey tills of Sheboygan county also 

resulted in difficult testing conditions, with numerous near surface refusals from cobbles and 

gravel. Continuing eastward from Plymouth resulted in deeper penetrations, with relatively 

successful testing at site DOT-10c. The inability to penetrate greater than 4 ft at site DOT-10 is 

attributed the fill soils that also contain gravel, rather than the natural material. Difficulties were 

also encountered for the fill soils at site DOT-1 in Green Bay. 

On average, penetration depths were lower in this study as compared to data reviewed from 

Mn/DOT and tests performed by commercial firms in the Milwaukee area. It is noted that 

median tip resistance values recorded at sites in this study were higher from previous sites in 

glacial geology reviewed. Both sites in Milwaukee had median tip resistance values less than 50 

tsf, and 18/21 Mn/DOT sites had median tip resistance values less than 55 tsf. Only 5/14 sites 

tested in this study had median tip resistance values less than 55 tsf, and 6/14 had median tip 

resistance values greater than 125 tsf. This being said, it is not the median tip resistance that 

results in refusal, it is the local maximum tip resistance or potential to cause sharp changes in 

inclination. These difficulties arose due to the presence of gravel and cobbles, mostly 

encountered in the relatively low tip resistance clayey tills.  

Commercial testing in the Milwaukee area had greater success when retesting adjacent to a 

sounding which had met refusal than retesting in this study. If testing in this program met refusal, 

retesting was performed at an offset of 6 ft. Additional offsets at 30 to 60 feet from a given 

location were attempted for repeat refusals. Excavation of near surface material aided in some 

situations, such as DOT-7, but was generally only successful if gravel and cobbles were limited 

to the upper 1 to 2 feet. 
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4.3 Equivalent Commercial Costs 

The budget for this project was developed based on an estimate of 2 days per site for each of 15 

sites, or 30 days total testing. Preliminary estimates from a commercial CPT firm was $3750/day 

for a 24 ton rig and $4000/day for a 30 ton rig, plus $4/mile round trip mobilization. This would 

result in a total field testing portion of the project costs that was over twice the total allowable 

budget of $65,000. A reduced research rate of $700/day was developed for the UW-Madison 24 

ton CPT rig, and when combined with a 12 month research assistant salary, tuition, and travel 

costs, the allowable budget of less than $65,000 could be achieved. The scope of 61 CPTs at 14 

sites was completed in 39 days of field work.  

Table 4.4. Estimated equivalent commercial costs for testing program undertaken 
Item Unit Cost 

($/ea) 
Unit 
(ea) 

Cost 
($) 

Mobilization    
     Loop 1 – fall 2010 $4/mi 450 mi $1,800 
     Loop 2 – spring 2011 $4/mi 100 mi $400 
     Purdue Rig – summer 2011 $4/mi 850 mi $3,400 
Location Setup    
     Paved Area / Field $75/test 61 tests $4,575 
In-situ Testing    
     Piezocone testing $8.50/ft 1848 ft $15,708 
     Hole abandonment (grouting) $4.50/ft 1848 ft $8,316 
     Dissipation test $200/hr 212 hr $42,400 
     Seismic Testing $25/test 163 tests $4,075 
Data Reduction    
     Electric Cone Penetrometer Sounding $75/test 61 tests $4,575 
Out of Town Expenses    
     Hotel $75/day 28 days $2,100 
     Meals $35/crew day 56 crew days $1,960 

 
Subtotal without dissipations 

 
$46,909 

 
Total 

Cost / day 

 
$89,309 

$2290/day 

 

Based on the quantity of testing completed, an equivalent value of commercial testing can be 

estimated. Table 4.4 summarizes estimated costs of the testing program based on typical rates for 

CPT contractors. The estimated commercial cost of the entire CPT field program was 37% 

greater than the total allowable project budget of $65,000. That figure would not include costs 
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associated with compilation of this report, evaluation of CPT data from previous sites, or 

supplemental borings and laboratory testing performed. The average day rate based on 

commercial production rates would be on the order of $2,300, however, due to the research 

nature of this study, productivity in terms of footage was lower than that of a commercial firm. 

Dissipation testing accounted for 47% of the total estimated commercial budget. Collection and 

interpretation of dissipation test results was paramount to this study and the understanding of 

CPT data in Wisconsin, but may not be needed for routine project testing once experience is 

organized.  
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5 Evaluation of soil behavior and properties 

5.1 CPT and SPT correlations 

In areas where use of the CPT is not prevalent, many engineers have developed their experience 

evaluating soil resistance based on SPT N-value. A first stage in starting to adopt the CPT often 

involves creating equivalent SPT blowcount profiles from CPT data (e.g., Robertson et al. 1983, 

Jeffereies & Davies 1993) and then applying SPT based correlation that the engineer is more 

comfortable with. Now that CPT based correlations to material properties have sufficiently large 

databases (e.g., Lunne et al. 1997, Mayne 2007), the intermediate step of generating correlations 

between cone tip resistance and SPT blowcount is unnecessary. However, the large amount of qt 

and SPT N-value data that are available in this study makes a review of qt and N correlations 

appropriate. Data from Minnesota is presented as energy corrected N60 values, while the 

correction of data from Wisconsin is uncertain and uncorrected N value are used. 

Figure 5.1 illustrates correlations between (qt/pref) and SPT N-value in relation to CPT 

normalized cone tip resistance and CPT friction ratio. Detail on the breakdown of the database 

and specific correlations for different soil types is contained in Tables 5.1 and 5.2. A reference 

stress (pref) equal to 1 atmosphere (1.058 tsf) is used to make the correlation nondimensional. 

Similar observations are made for each study, which are in general agreement with (qt/pref)/N60 

ratios presented by Robertson et al. (1983); (i) (qt/pref)/N60 increases from approximately unity in 

fine grained soil to approximately 4 in coarse grained soils; (ii) the coefficient of variation is 

between 50 and 100%. For the new Wisconsin sites (this study), 18 tests in soft clays and organic 

material had blowcounts of zero, negating the applicability of the N-value or assessment of 

(qt/pref)/N. The ability to accurately measure resistance in very soft soils is an advantage of the 

CPT. 
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Table 5.1. Comparison of CPT and SPT penetration resistance in organic and clayey soils 
Dataset Organic Low Plasticity Clay High Plasticity Clay 
 Median COV n Median COV n Median COV n 
Minnesota 
 

1.0 0.45 9 1.3 0.53 44 1.9 0.41 28 

Wisconsin Marquette / 
Mitchell 

1.2 0.56 13 2.4 0.72 63 - - - 

Wisconsin UW Study 
 

0.6 - 1a 2.3 0.71 26b - - - 

a 2 tests with SPT N-value of 0 (weight of rods or weight of hammer) 
b 16 tests with SPT N-value of 0 (weight of rods or weight of hammer) 
 
Table 5.2. Comparison of CPT and SPT penetration resistance in sands, sand mixtures, and fill 
Dataset Sand Loam Fill 
 Median COV n Median COV n Median COV n 
Minnesota 
 3.8 0.31 36 2.5 0.88 24 - - - 
Wisconsin Marquette / 
Mitchell 3.5 0.83 8 2.2 0.96 5 4.3 0.82 29 
Wisconsin UW Study 
 5.6 0.46 35 2.5 0.49 20 - - - 

 

It is interesting to note, that on average (qt/pref)/N ratios for Wisconsin sites were 50 to 80% 

higher than those from Minnesota and the coefficient of variations for the correlations are higher. 

It is inferred that these differences and higher uncertainties are associated with SPT hammer 

energy and other correction factors. The higher (qt/pref)/N ratios for Wisconsin sites indicate 

lower N-values, which indicate transferred energies greater than 60%. It is recommended that if 

SPT data is collected at a site, a calibrated hammer is used and data are presented as N60 rather 

than N. This will reduce uncertainty in application, and may lead to less conservative assessment 

of engineering parameters. 

5.2 Assessment of Geotechnical Parameters 

This section focuses on correlations between CPT measurements and mechanical parameters. 

Definitions and a summary of engineering parameters discussed in this section are presented in 

Section 2.1.2.  
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Dissipation testing measures the change in pore-water pressure with time during a halt in 

penetration.  This test is analogous to an oedometer test where a load is applied to the soil and 

reduction in pore pressure (or settlement related to increases in effective stress) is measured with 

time.  Results of CPTU dissipation tests can be used to directly assess the coefficient of 

consolidation and indirectly assess the hydraulic conductivity. 

Results are analyzed in terms of the dimensionless normalized excess pore-water pressure, U: 

i

t

i

t

u

u

uu

uu
U









0

0  (5.1) 

ut is the measured pore pressure at time t, u0 is the in-situ hydrostatic pore water pressure, and ui 

is the measured pore water pressure at the beginning of the dissipation. t100 is the time to 100% 

dissipation of excess pore-water pressures where the measured pore-water pressure is equivalent 

to the hydrostatic value (um = u0). Conventional dissipation curves decrease continually with 

time. Normalized modified time factors (T*) can be used to analyze the coefficient of 

consolidation from dissipation tests. 

t

IrT
c r

h

2*
   (5.2) 

where r is the cone radius, T* is a modified time factor (Table 5.3) and t is the time to reach that 

percentage of dissipation or consolidation, for example t50 for T*50.  Equation 5.2 is typically 

applied by determining the initial pore pressure at the beginning of the test, calculating U at each 

time measurement, and determining the time at 50% dissipation, t50, when U = 0.5.  The ch 

calculation is typically performed using t50, but may be taken from any point on the dissipation 

curve.  Schnaid et al. (1997) compared the variability of results depending on what percent of 

consolidation is selected and found that estimates taken at 50% and greater displayed less 

variability.  This is an important point because conducting a dissipation test to hydrostatic values 

in soils with low hydraulic conductivities may require several days.  
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Table 5.3. Modified time factors for CPTU dissipations (Teh & Houlsby 1991) 
Degree of Consolidation 

1-U 
T* at the cone shoulder 

0.20 0.038 
0.30 0.078 
0.40 0.142 
0.50 0.245 
0.60 0.439 
0.70 0.804 
0.80 1.60 

 

Conventional monotonic dissipation curves may not always be observed in glacial geological 

conditions.  An increase in pore pressure may be measured followed by a decay to the in-situ 

pore pressure condition, known as a dilatory dissipation. This effect has been contributed to local 

shear induced pore pressures, as shown for monotonic versus dilatory dissipations in Figure 5.3. 

A complete hybrid critical state model can be used to quantify dilatory dissipation response, but 

these solutions are still being refined (Burns & Mayne 1998, Mayne 2007). Analysis of dilatory 

dissipations in this study used the square root of time method (Figure 5.4) discussed by Sully et 

al. (1999) to estimate t50, and the Teh & Houlsby (1991) modified time factors. Parametric 

studies by Hotstream (2011) imply that this method yields ch values that are within a factor of 1.5 

(on the low side), provided that measured penetration pore pressures are positive. 



 

Figure 5.3
during pen
1998). 
 

Figure 5.4.
 

0

100

200

300

400

500

600
Ex
ce
ss
 P
o
re
 P
re
ss
u
re
, 

u
2
(k
P
a)

. Comparison 
netration with a

. Evaluation of

1

ush

us

between a mo
a dilatory curv

f dilatory dissip

10

hear

shear uo

onotonic dissip
e where negati

pation using sq

100

Dil
(OC

oct

80 

pation curve w
ive pore-water

quare root of tim

1000

Time (sec

latory
C Clay)

M
(

where positive
r pressures are 

me method (af

10000

c)

Monotonic
NC Clay)

e shear pore-w
generated (aft

fter Sully et al. 

100000

water pressures 
ter Burns and M

1999) 

1000000

 

occur 
Mayne 

0



 

Figure 5.5.
 
Table 5.4. 

Site 

DOT-1 
DOT-1 
DOT-7 
DOT-10c 
UW-1 
UW-1 

 

Assessm

compared

and cv va

the influe

oedomete

are obser

on the or

as low a

selected r

field ch v

due to m

. Comparison o

Summary of la
Lo

Upper Glac
Lower Glac
Soft Shallo
Upper Till 
Organic 
High Plasti

ent of ch fro

d to laborato

alues for a gi

ence of spati

er and dissip

rved for the 

rder of 100 t

as 5 to 10 i

rigidity valu

values. While

acrofabric an

of dissipation d

aboratory and f
ocal Geology 

cial Lake 
cial Lake 
w Lake/Palaud

city Silt 

om field diss

ory cv value

iven site wer

ial variabilit

pation data (

Wisconsin s

to 500 in nor

in heavily o

ue of 84 tend

e there is som

nd higher ho

data to laborato

field coefficien
t50,m

(se
17
73

dal 81
57
24
7

ipation data 

s from oedo

re often avai

y on assessm

(Robertson e

sites and the

rmally conso

overconsolid

ds to result in

me uncertain

orizontal hyd

81 

ory oedometer 

nt of consolidat
mean 
ec) 

m
Ir =

91 3.9
34 9.5
15 8.5
72 1.2E
47 2.8E
9 8.8E

for assumed

ometer tests 

ilable, and th

ment of the c

et al. 1992) 

e global data

olidated to li

dated soils (

n a slight ov

nty in select

draulic condu

tests 

tion data for W
mean field ch (
= 84 

9E-01 
5E-01 
5E-01 
E+00 
E+00 
E+00 

d rigidity ind

in Figure 5.

he geometric

correlation. A

is included 

abase. Rigidi

ightly overco

(Keaveny &

verprediction

tion of Ir, mu

ductivity as c

Wisconsin sites 
(ft2/day) 

Ir = 500 
9.5E-01 
3.5E+00 
2.1E+00 
3.0E+00 
6.9E+00 
2.1E+01 

dex values o

.5 and Table

c mean was 

A database o

in Figure 5.

ity index va

onsolidated 

& Mitchell 1

n of laborato

uch of the di

compared to 

mean lab
(ft2/da
2.0E-0
3.0E-0
1.9E+0
1.8E-0
1.5E+0
1.4E+0

of 84 and 50

e 5.4. Multip

used to mini

of field sites

.5. Similar tr

lues are typi

soils, but m

986). The l

ry cv values 

ifference is l

vertical. 

 

b cv 
ay) 
01 
01 
00 
03 
00 
00 

00 are 

ple ch 

imize 

s with 

rends 

ically 

ay be 

lower 

from 

likely 



82 
 

While laboratory data was only available for a limited number of locations where dissipation 

tests were performed, data in Figure 5.5 give us confidence in the results from the large number 

of dissipation tests performed in this study. 

To evaluate hydraulic conductivity from dissipation tests, the constrained modulus of the soil is 

needed (Equation 2.1). Constrained modulus can be estimated from CPT data, as discussed in the 

next section. 

5.2.2 Compressibility 

Compressibility is the change in volume due to change in effective stress, and is most important 

for soft clays and organic soils. During cone penetration in soft clays and organic soils, the 

coefficient of consolidation is low enough that penetration is undrained, and essentially no 

change in octahedral effective stress occurs. Any estimation of compressibility from CPT 

parameters is therefore a correlation that has a relatively weak theoretical basis. 

A correlation between constrained modulus (1/compressibility) and net cone tip resistance takes 

the form: 

 0'' vtc qD    (5.3) 

Mayne (2007) highlights that c' is site specific and varies from about 1 to 2 in soft high 

plasticity clays to 10 in cemented clays.  

Since D' is an effective stress parameter it may be considered more fundamentally sound to 

develop correlations between D' and effective cone tip resistance. 

 2'' uqD tce   (5.4) 

Based on deformations below an embankment in a lightly overconsolidated clay and silty clay, 

Tonni & Gottardi (2011) proposed ce' of 2.3. Like the correlation to net tip resistance, 

correlations between D' and effective cone tip resistance appear site specific. The coefficient of 
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The Mayne (2007) database is plotted in Figure 5.6 with an overlay of data from Wisconsin. As 

previously mentioned, there are not unique constrained modulus correlations and the correlation 

to net tip resistance shows less scatter than the correlation to effective tip resistance. Inclusion of 

CPT penetration pore pressures does not reduce uncertainty in the correlation, and correlations to 

qcnet are recommended. Data from Wisconsin tend to follow the lower limit of the correlation 

with constrained modulus being approximately twice the net cone tip resistance. This was true 

for very soft low PI soils at DOT-7, as well as very stiff low PI soils at DOT-10c.  

Three of the four data points from site DOT-1 (sensitive low plasticity lacustrine clays from 

Green Bay) tend to plot higher than the average trend, and are similar to lacustrine clays at the 

Northwestern test site in Evanston. The structured nature of the clay may result in low 

compressibility (high constrained modulus) as compared to cone tip resistance, however, sample 

disturbance for the sensitive clays from Green Bay make interpretation of response uncertain, 

and high quality undisturbed sampling at that site is recommended. 

5.2.3 Shear Stiffness 

Immediate deformations, whether drained or undrained, occur from applying a shear stress to a 

soil element. The resistance to distortions caused by shear stresses is the shear stiffness, or shear 

modulus (G). As previously mentioned, shear stiffness is difficult to evaluate since it increases 

with effective stress and decreases with increasing strain level (Figure 2.8). Operational stiffness 

for foundations and retaining walls is much less than that measured in geophysical tests and 

close to the stiffness measured in pressuremeter unload-reload loops. Depending on the fraction 

of ultimate capacity to which a wall or foundation is loaded, operational stiffness may be less 

than that from a pressuremeter unload-reload loop.  

Small strain stiffness is covered in Section 7.1 on the seismic cone test, and this section will 

focus on larger strain measurements of stiffness. No pressuremeter data were available for the 

field sites tested under this program, and correlations between cone tip resistance and 

pressuremeter data for Lake Clays and Clayey Tills from the Marquette Interchange and Mitchell 

Interchange projects are assessed herein. Shear stiffness of sandy soils is addressed in Section 6.1 

on the design of shallow foundations. 
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As pressuremeter unload-reload loop depth increases (change in total stress, p), the average 

strain over the loop increases and Gu-r/G0 decreases (i.e., Figure 2.8). When the loop depth (p) 

exceeds twice the undrained strength, the soil is yielding plastically, resulting in lower stiffness 

values.  Average p/su values for pressuremeter tests performed at the Mitchell interchange were 

1.5, but were 2.0 for the Marquette Interchange. This greater loop depth during unload-reload 

loops, as well borehole disturbance and other differences in testing procedures, likely resulted in 

the differences in correlations between CPT parameters and shear stiffness.  

Data generally support the following correlation between intermediate strain level shear stiffness 

for low plasticity clays from the Milwaukee area: 

1

10
114


 






 

Q

q

G

cnet

ru

 (5.5)
 

Correlations of this format require additional site specific validation with high quality 

pressuremeter testing. Additional comparison to results from seismic cone tests may reduce 

uncertainty in assessment of low-high strain values of shear stiffness. 

5.2.4 Resilient Modulus 

For design of flexible pavement systems, estimations of the resilient modulus (MR) are a key 

design parameter. Resilient modulus is conceptually similar to the unload-reload shear modulus 

discussed in the previous section, and therefore, it is logical that a state dependent correlation to 

cone tip resistance could be developed. It is noted that correlations in the previous section were 

only applicable for low plasticity clays tested at an intermediate strain level, and the empirical 

coefficients need validation in other soil and loading conditions. 

Additional complexities in resilient modulus occur since the resilient modulus is defined at a 

particular bulk stress level, which will generally differ from the in situ mean effective stress. 

Schuettpelz et al. (2010) discuss the need to account for void ratio, stress level and strain level in 

the evaluation of resilient modulus.  
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While no assessment of resilient modulus from CPT parameters was performed in this study, 

existing correlations have been discussed by Puppala (2008). The following equation has been 

used as an estimate of resilient modulus for overburden and traffic conditions based on CPT 

measurements (Puppala 2008): 

w

ds
c

R

w

f
q

M





7.14.17047

1

1
55.0

3








         (5.6) 

Where MR is the resilient modulus in MPa, qc is the cone tip resistance in MPa, fs is the sleeve 

friction in MPa, 1 and 3 are the major and minor principal stresses in kPa, w is the water 

content expressed as a decimal, d is the dry unit weight, and w is the unit weight of water. 

While it is not recommended to use this dimensionally specific (and inconsistent) empirical 

correlation that has no link to physical mechanisms, the format highlights that the correlation 

between strength and stiffness is soil type dependent (i.e., depends on qc and fs), varies with void 

ratio (use of w and d in correlation), as well as mean stress (3). It is recommended to extend the 

correlation formats discussed by Schuettpelz et al. (2010) in light of sand and clay G/qcnet 

correlations presented in sections 5.2.3 and 6.1 of this report if attempting to assess resilient 

modulus from CPT parameters. 

5.2.5 Strength 

 

Undrained 

A primary application of the cone penetration test is to evaluate undrained strength of clayey 

soils. The results would be applicable to assess embankment stability, deep foundation axial and 

lateral resistance, bearing capacity of shallow foundations, among other design issues. The net 

cone tip resistance is reduced by a cone factor (Nk) to estimate the undrained strength at the time 

of testing. 
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k

cnet
u N

q
s   (5.7) 

It is often useful to assess data in terms of normalized undrained strength ratio, su/'v0: 

kk

vcnet

v

u

N

Q

N

qs
 0

0

'

'




 (5.8) 

 
Published values of Nk generally range from 7 to 25 (e.g., Salgado 2008), however, theoretical 

evaluation of cone factors limit this range to 10 to 15 (e.g., Randolph 2004). Median cone factors 

for DSS and vane shear (VST) modes of strength are 13.7 (Randolph 2004). The wide range of 

cone factors published in the literature can largely be attributed to sample disturbance and 

strength anisotropy. Table 5.6 lists how various issues affect undrained strength, cone tip 

resistance, and apparent Nk value (Nk,app). 

 

Table 5.6. Factors influencing apparent cone factor (Nk,app)  
 su,meas 

Nk,app 
su,meas 
Nk,app 

qc,net 
Nk,app 

Sample Disturbance X   
Fissuring X   
Sensitivity X   
Spatial Variability / / / 
Strength anisotropy X X  
Fissured clay X   
Increase in testing rate (for CPT, viscous)   X 
Decrease in testing rate (for CPT, drainage)   X 
Increase in testing rate (for reference test, viscous)  X  
Decrease in testing rate (for reference test with 
uncontrolled drainage conditions, i.e., VST, drainage) 

 X  

Net area ratio correction for CPT   / 
Drift in CPT baseline   / 
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Strength data from this study was available from: 

 Soft high plasticity silt at UW-1 (CIUC) 

 Soft low plasticity clays at DOT-1 (UU and VST) 

 Soft low plasticity clay for the Marquette Interchange Project (UC) 

 Stiff low plasticity clay for the Marquette Interchange Project (UC) 

Triaxial compression data were available at all sites, however, the test performed included (i) 

isotropically consolidated undrained compression tests (CIUC); (ii) unconsolidated undrained 

compression tests (UU); and (iii) unconfined compression (UC) strength tests. Of the 26 triaxial 

tests, only 1 was a CIUC test. UU and UC compression tests have low reliability and results 

should be used with caution. Field vane shear tests were also performed at 15 depths at the DOT-

1 site. Strength data is compared to CPT net tip resistance in Figure 5.8. Cone factors of 10 and 

15 are shown for reference.   
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The recommended correlation of Kulhawy & Mayne (1990) matches triaxial test results from 

frozen specimens of clean sands well in Figure 5.9a. Application of the correlation in Figure 5.9b 

to undrained triaxial tests on clayey tailings with 5 to 15% fines appears slightly conservative. It 

should be noted that the friction angle for relatively low stress triaxial tests summarized in Figure 

5.9 will be too high for application to bearing capacity of shallow foundations in sands. These 

friction angles should be reduced to account for mean stress at failure (e.g., Equation 2.15). 

5.3 Soil Classification 

Conventional soil classification for geotechnical engineering is typically performed to the 

specifications of the USCS (Casagrande 1948, ASTM D 2487 and D 2488) a primarily textural 

system.  The USCS breaks soils into two major divisions: coarse and fine grained soils based on 

the percentage of fined grained soil particles, nominal diameter < 0.075 mm, passing through the 

number 200 sieve (#200).  Coarse grained soils are sands and gravels defined as having over 

50% of the particles with a nominal diameter greater than or retained on the #200.  Fine grained 

soils, silts and clays, have over 50% passing the #200.  Further, divisions within these two main 

groupings are made based on additional factors such as percent fines and plasticity. 

Sands and gravels are further grouped based on gradation, or the distribution of particle sizes.  A 

well graded soil exhibits a gradual transition in grain size from coarser gravels and sands to fine 

sands.  A poorly graded soil has a poor distribution of grain sizes and is therefore likely to 

exhibit a larger void space than a well graded sand or gravel.   Fines content, the percentage of 

particles by mass passing the # 200 sieve, is also considered in the classification of sands and 

gravels where the fines content greater than 5% changes the classification to indicate the 

presence of fines. This classification system groups coarse grained soils by void space because 

the strength and water flow behavior is dependent upon inter-particle interactions and void space.     

Silts and clays are classified by consistency limits or the Atterberg limits. These limits represent 

the water contents at which fine grained soils change behavior.  The plastic limit (PL) represents 

the change in soil behavior from a brittle solid to a plastic material defined as a shear strength of 

170 kPa (Wroth & Wood 1978).  The liquid limit (LL) represents the threshold between plastic 
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and viscous liquid behavior and is defined as the shear strength of 1.7 kPa (Wroth & Wood 

1978).  The difference of these parameters is the Plasticity Index (PI=LL-PL), and is plotted 

against liquid limit, allowing for classification of fine grained soils in Figure 5.10.   

This classification based on Atterberg Limits does not accurately account for grain size 

differences between silt and clay particles, but rather indexes potential compressibility.  Studies 

have found “silts” classified as clays and “clays” classified as silts (USBR 1998), however; PI is 

a useful indicator of anticipated soil behavior.  The plasticity index has been correlated to the 

compression index, Cc, (Wroth & Wood 1978, Atkinson 2007): 

5.3100

PIG
C s

c   (5.10) 

Estimates of remolded undrained shear strength (su) can be estimated using the liquidity index 

(LI) which is defined as: 

PI

PLw
LI


  (5.11) 
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Table 5.7. Soil behavior type number zones and descriptions (after Schneider et al. 2008) 
SBTn Simplified Soil Description Assessed drainage 

during cone 
penetration 
(this study) 

Similar Zone in Robertson 
(1990) Q-F classification 
charts  

Assessed drainage 
during cone 
penetration 
(Robertson 2010) 

1p Organic soils Undrained to partially 
drained 

2: Organic Soils – Clay 
 

Undrained 

1b Undrained Clays Undrained 3: Clay to silty clay 
 

Undrained 

1a Silts and ‘Low Ir’ Clays Undrained to partially 
drained 

4: Silt mixtures – Clayey 
silty to silty clay 

Undrained 

1c Sensitive Clays Undrained 1: Sensitive fine grained 
 

Undrained 

1ac Sensitive silts and sensitive 
‘Low Ir’ clays 

Undrained to partially 
drained 

1: Sensitive fine grained Undrained 

3 Transitional soils Undrained to 
essentially drained 

5: Sand Mixtures – Silty 
sand to sandy silt 

Partially drained 

3s Transitional soils – Sands 
and sand mixtures 

Partially drained to 
essentially drained 

6: Sand Drained 

2 Sands Essentially drained 
 

7: Dense sand to gravelly 
sands 

Drained 

 

Inferred soil behavior type is quite similar for this system and the Robertson (1990) charts, but 

tends to become offset by one zone for sands and silty sands and differ significantly for 

overconsolidated clays. These differences are in agreement with the inferred point at which cone 

penetration is drained or undrained, as indicated in Figure 5.2. To understand these drainage 

boundaries and cone penetration testing in Wisconsin, an extensive dissipation testing program 

was performed. Initial assessment of soil behavior type will be based on drainage conditions 

during penetration, quantified through dissipation testing. 

Cone penetration and drainage conditions are linked through the normalized velocity (V, e.g. 

Finnie & Randolph 1994).  

hc

dv
V


  (5.13) 

Where v is the penetrometer velocity, d is the penetrometer diameter, and ch is the horizontal 

coefficient of consolidation. Dissipation times (Section 5.2.1) are typically characterized by the 

time to 50% consolidation, t50. The normalized velocity (V) is actually equal to t50 for standard 
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cone dimensions (d=1.44 inches) and penetration rates (0.78 in/sec) and an assumed rigidity 

index of 84 (Figure 5.5a). This relationship is only applicable if penetration is undrained. If 

penetration is partially drained, normalized time factors tend to increase as compared to the 

undrained case (Silva et al. 2006, Schneider et al. 2007) and the V-t50 relationship needs to be 

modified. Table 5.8 presents several t50 times with anticipated water flow characteristics. The 

calculated values of V in Table 5.8 agrees well with the suggested ranges for drained penetration 

with V< 0.1 and undrained penetration occurring at V>30-100 (Randolph 2004).  

The location of data in Q-F soil classification charts is shown in Figures 5.12 to 5.16. The 

sensitivity boundary has been removed such that CPTU soil classification charts should be in 

better agreement with non state assessment of soil types (i.e., USCS, AASHTO). Table 5.9 

provides drainage estimates of several t50 values.  Hydraulic conductivity was estimated using 

Equation 2.1 with an assumed D of 100 tsf.  This table allows for rough estimation of the water 

flow properties of the soil.   

Table 5.8. Estimates of cv and V based on different t50 times calculated using Teh and Houlsby (1991) solution.  
Values were corrected based on results by Silva et al. (2006).  Calculations based on a cone diameter of 35.6 mm 
and soil with Ir = 84. 

v 
(mm/s) 

t50 
(s) 

T50 
 

Apparent 
ch 

(ft2/day) 

Apparent 
V 
 

T50,pc/T50 
 

T50,pc 
 

ch 
(ft2/day) 

V 
 

Drainage 
Condition 

20 5 0.245 132 5 16 3.9 2119 0.3 
Essentially 
Drained 

20 15 0.245 43.7 15 5.6 1.37 247 2.7 
Partially 
Drained 

20 30 0.245 18.6 30 2 0.49 44.6 15 
Partially 
Drained 

20 100 0.245 6.5 100 1 0.245 6.5 100 Undrained 

20 300 0.245 1.9 300 1 0.245 2.2 300 Undrained 

20 3000 0.245 0.2 3000 1 0.245 0.2 3000 Undrained 

 
Table 5.9. Legend and range of t50 presented in Figures 5.12 to 5.16.  Estimated water flow characteristics based on 
calculations in Table 5.8. Values presented in this table are applicable to a 10 cm2 cone advanced at the standard 
steady rate of 20 mm/s. 

t50 
(s) 

Symbol V 
ch 

(ft2/day) 
kh 

(ft/day) 
Drainage Condition 

0 – 15  <2.7 >247 >0.07 Essentially Drained 
15-30  2.7 – 15 45-247 0.003-0.03 Partially Drained 
30-100  15 - 100 6.5-45 0.0003-0.003 Essentially Undrained 
100-300  100 – 300 2-6.5 0.0003 Undrained 
300-3000  300 - 3000 0.2-2 3x10-5-3x10-4 Undrained 



 

Figure 5.12
Colors are 
times and l

Figure 5.13
 

2. Q-F chart w
based on dissi

location on the

3.  Data points 

with Wisconsin 
ipation t50 time

e revised Q-F S

in Q-F space f

data presented
es within a lay
SBTn chart. 

for dissipations

98 

d and grouped 
yer, Table 4.1. 

s with t50 times

by dissipation
 This is one of

s of 100 s to 30

 

n t50 times betw
f 5 figures rep

 

00 s. 

ween 300 s to 3
resenting dissi

3000 s.  
ipation 



 

Figure 5.14
 

Figure 5.15
 

4. Data points 

5. Data points 

in Q-F space fo

in Q-F space fo

for dissipations

for dissipations

99 

 with t50 times 

 with t50 times 

of 30 s to 100 

of 15 s to 30 s

 
 s. 

 
s. 



 

Figure 5.16
 

 
Table 5.10
5.16. 

 

 
D

 

Table 5.1

5.12 to 5

3s and 2 

of 1p, 1b

addition 

6. Data points 

0. Percentages 

Dissipation t5

Times (s) 

0 - 15 
15 - 30 

30 - 100 
100 - 300 

300 - 3000 

10 provides t

5.16.  The tre

containing t

b, and 1a con

to displayin

in Q-F space fo

of points that p

0 % Data
in 1p 

0 
0 

0.6 
9.1 
3 

the distribut

ends of drain

the majority 

ntain the ma

g trends in d

for dissipations

plot within eac

a % Data 
in 1b 

0 
0 

18.9 
10.3 
29.5 

ion of points

ned layers p

of data poin

ajority of po

drainage in Q

100 

 with t50 times 

ch soil zone of

% Data 
in 1a 

%

0.1 
6.1 

55.2 
63 

65.1 

s that plot w

plotting in zo

nts for dissip

oints with di

Q-F space, th

of 0 s to 15 s.

f the revised Q

% Data 
in 3 

%
i

4.2 7
4.1 4

16.6 
16.4 
1.9 

within each c

ones 3, 3s an

pation times o

issipation t50

his series of

 

Q-F SBTn char

% Data
in 3s 

% D
in

72.6 23
45.7 44
8.1 0
1.3 
0.4 

lassification

nd 2 are obs

of 0 to 30s.  

0 times great

f figures is in

rt for Figures 5

Data 
n 2 

Tota
Poin

3.1 693
4.1 245

0.6 344
0 397
0 789

n zone for Fi

served with z

The SBTn z

ter than 100

n agreement

5.12 to 

al 
nts 

3 
5 
4 
7 
9 

gures 

zones 

zones 

s.  In 

t with 



101 
 

the shape of the boundaries suggested by the revised Q-F chart of constant F at larger values of Q 

and variable F values at low Q conditions for soils with similar water flow characteristics.  

The next step in evaluating soil classification from CPT data is to provide a link from water flow 

characteristics to soil type. This was achieved by simplifying data from study CPTU soundings 

conducted across WI in varying geologic deposits to a number of representative layers.  The 

results of the field work have been summarized in Table 5.11 in 23 representative layers based 

on visual classification. Many of these layers (13/23) also include laboratory classification.  

Initial review of the median of the CPTU normalized parameters provides an indication of the 

relative differences expected between different soil types.  Large differences in Q and F are 

observed between the sand and clay soils as expected. The distribution of these data in soil 

classification charts is provided in Table 5.12.   Layers analyzed in this study are presented in the 

revised Q-F and Q-u2/'v0 space in Figures 5.17 to 5.22. 

This large dataset allows a check of the relationships determined for data placement in the 

revised Q-F classification chart, as well as consistency between Q-F and Q-u2/'v0 charts.  

Firstly, the sand soils, Figure 5.17 and 5.18, typically fall within zones 2 and 3 s as indicated by 

the dissipation testing performed in this study.  The differences in drainage conditions are readily 

apparent in the pore pressure based charts, where the sand mixtures are showing elevated pore 

pressures.  
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drillers’ visual classifications, these layers are interpreted as silts in the textural sense. These silty 

soils, however, are likely to have some clay component and additional sampling and 

classification testing is warranted. Further indication of the partially drained behavior of these 

soils is observed in Q-u2/’v0 space, with ‘movement’ of data points between Zones 1b into 3.  

A small gap in data in these figures occurs in the transitional soils zone (3), with Layer 6 being 

the only silt soil that plots in the center of that zone in the CPTU classification charts.  Many of 

the silt layers in this study plot on the boundary of zones 3 and 1a.  Layer 20 represents a high 

plasticity silt tested from site UW-1. Index testing resulted in the soil plotting essentially on the 

A-Line in the Casagrande plasticity chart, showing nearly high plasticity clay behavior. 

Undrained soil response is anticipated to plot in Zone 1b, and transition through Zone 1b to reach 

Zone 3 as drainage increases.  This trend is observed in the silt data provided in Figure 5.19. 

Additional CPTU testing in transitional soils or silt deposits may help fill this gap and further 

develop the boundary shown.   

In the clayey soil regions, zones 1a and 1b, the general shape of the zones match the movement 

of data in classification charts as OCR changes. Variation in OCR and state can be observed 

when comparing locations of normally consolidated lake clays in Figure 5.21 to the 

overconsolidated clayey tills in Figure 5.20. The tills typically display larger values of Q and 

larger values of F.  

Organic soils tested at site UW-1 are shown in Figure 5.22.  These soils displayed relatively low 

tip resistances and high friction ratios, with the data points falling within zone 1p. Additionally, 

low penetration pore pressures and moderate rates of drainage (during dissipation tests) were 

measured (Figure 5.13). Organic soils and peats are highly variable deposits and the results from 

one test site do not provide adequate data to fully constrain all organic soils. 

Previous discussion of dissipation results highlighted the fact that soils exhibiting different 

behaviors under typical loading conditions may plot in similar locations in SBTn charts.  Figures 

5.17 through 5.22 provide some insight into areas of overlapping soil types for typical conditions 

of Wisconsin to aid in judgment when utilizing cone penetration testing in Wisconsin. Variability 

is observed, as expected, in the unsorted till data in Figure 5.20.  Careful review of the available 
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data is critical to a correct interpretation of soil type from SBTn charts.  Assigning a rigid 

classification to all data within a certain zone is not recommended; however, incorporating 

knowledge of the surrounding geology, landscape features, and previous investigations (i.e., soil 

survey maps and geologic maps) an engineer/geologist may anticipate soils and sequences that 

will be encountered during an investigation.    

A summary of the zones of the soil classification chart in which data plot is provided in Table 

5.12. A majority of data plot is zones 1b and 3s, ‘Low Ir’ clays and silts and sand mixtures. Since 

the clays tested in this study were predominantly low plasticity index clays, this zone could be 

considered as low PI clays in Wisconsin. Only one high plasticity inorganic fine grained soil was 

tested, layer 20.  This bias may be due to the relative low occurrence of high plasticity clays and 

silts in WI or the sites tested.   

In relation to soil classification, it is summarized that even when testing in an area with little to 

no background knowledge, the CPTU is an applicable tool even though it does not provide a soil 

sample.  Sands below the water table are readily identified as plotting in zones 3s and 2 of the 

revised Q-F SBTn space with no excess pore pressures generated during penetration.   Normally 

to overconsolidated, insensitive clay soils will provide friction ratios greater than 3 and typically 

positive excess pore pressures.  Negative pore pressures are typically associated with highly 

overconsolidated soils and will therefore coincide with large Q values.  Soft layers of concern are 

readily identified by CPTU testing based on tip resistance, and the extents of these layers can be 

quickly determined by performing multiple soundings.  Pore-water pressures are key in 

determining drainage characteristics of soils that plot in or near the transition zone.  If pore 

pressures are unavailable (i.e., a low water table) use of Q-F SBTn chart may be done assuming 

the worst case scenario for a low risk project; for example if a soil plots in zone 3s assume that it 

is a transitional soil with a significant fines content as suggested by Ramsey (2002).  Gradually, 

as more testing is performed a reliable interpretation of the soils at a site/region can be developed 

using CPTU. 
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6 Applications 

No field data of foundation or embankment performance was available at the WisDOT CPT test 

sites, and this section will provide an overview of mechanisms that influence the use of CPT data 

for design of shallow foundations, axial loading of driven piles, and embankments. 

6.1 Shallow Foundations 

For shallow foundations to be applicable to transportation structures, the underlying soils 

typically need to have a high stiffness to minimize deformations. For the most part, if settlements 

are minimized then a sufficient factor of safety against bearing capacity is achieved (e.g., Mayne 

& Illingsworth 2010). Bearing capacity calculations still need to be performed, but design 

decisions related to application of bearing capacity equations are primarily driven by selection of 

strength parameters, discussed in Section 5.2.4. This section will focus on shear deformations of 

sands and stiff clays. Consolidation settlements of clay soils would additionally need to be 

considered for shallow foundation design, but is not specifically addressed herein. 

The analysis of settlements caused by shear distortions of the soil beneath shallow foundations 

can simply be thought of as a stress-strain curve, the stress is the footing load divided by the area 

(q) and the strain is indicated by the settlement (s) normalized by the footing width (B) or 

equivalent diameter (Deq). 

      











1
2

1
2

1
1

2 I

q

G

q

qI

G

q
I

E

q

D

s

tteq
 (6.1) 

where I is an influence factor that is typically defined in terms of elastic modulus. For a rigid 

footing on an infinitely thick homogeneous elastic half space, I is equal to /4. Values of 

influence factors are affected by a number of issues including: 

 Change in shear stiffness with depth 

 Footing shape (circle / square, rectangular, strip) 



 

Figure 6.1
resistance 
 

. Comparison of database off footing tests 

110 

to empirical ccorrelations bettween shear m
 

modulus and coone tip 



111 
 

 Foundation stiffness 

 Foundation embedment 

 Presence of shallow bedrock 

Various influence factors are discussed by Mayne & Poulos (1999) and Mayne (2007), and this 

section will focus on the homogeneous case for sandy soils. Selection of shear stiffness for 

undrained clays is discussed in Section 5.2.3. 

Figure 6.1 compares correlations between shear modulus and cone tip resistance in two different 

formats for assessment of shallow foundation footing settlements. 

 Constant ratio of G/qt (after Schmertmann 1978) 

 G/qt reducing as s/Deq (i.e., strain level) increases 

Correlations were selected to provide a good match to data at a normalized settlement of 1% of 

the footing equivalent diameter. This corresponds to settlement of 1 inch for a 7.5 ft square 

foundation. 

The constant ratio of G/qt can match the database for a given value of s/Deq, but over predicts 

settlements for smaller s/Deq and under predicts settlements for larger s/Deq. This is the main 

difficulty in selection of stiffness for settlement calculations, as illustrated in Figure 2.8. To 

account for stiffness nonlinearity, a power law function may be used. Mayne & Illingsworth 

(2010) suggest stiffness reduces as a function of s/Deq
0.5. The entire database, of both 

overconsolidated and normally consolidated sands, is fit well using s/Deq
0.5. Alternatively, 

Burland & Burbidge (1985) suggest that G/qt reduces as a function of s/Deq
0.7. When using this 

relationship, ‘overconsolidated’ sands are typically 2 times stiffer than normally consolidated 

sands, but there is some overlap of the databases.   

It should be noted that the stiffness relationships for clayey soils in Section 5.2.3 did not include 

a reduction in modulus due to strain level. Linking small strain shear modulus from seismic cone 
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2005), and also be influenced by the relative level of soil displacement during pile installation 

(e.g., Gavin & Lehane 2003). Pile shaft friction correlations between f based on CPT qt are still 

considered more reliable than correlations to CPT fs. 

A multi variable expression relating f to qt has been developed based on mechanisms 

influencing pile shaft friction and the assumed (relative density independent) correlation between 

radial effective stress after installation and equalization and qt (Lehane & Jardine 1994, Gavin & 

Lehane 2003, Lehane et al. 2005): 

frd

c
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t
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 (6.6) 

Terms within Equation 6.6 are illustrated in Figure 6.2, where ft/fc is the ratio of friction in 

tension to that in compression (taken as unity in compression), Ars,eff is the effective area ratio of 

the pile toe during installation and ‘h’ is the height above the pile tip. Ars,eff is affected by 

plugging at various stages during installation, which is best assessed using the IFR that may vary 

with depth during driving. With the above expression, fitting parameters are related to various 

mechanisms that affect the correlation between qt and f: 

 a = parameter to account for the reduction in radial stress behind the pile tip 

 b = parameter to account for differences between open and closed ended piles 

 c = exponent to account for ‘friction fatigue’ 

  = parameter to account for and upper limit on (h/D)-c near the pile tip 

It is noted that friction fatigue is the reduction in local friction, which occurs as a pile tip is 

driven deeper into the soil (e.g., White & Lehane, 2004). Within the UWA-05 method for 

siliceous sands, the parameters a, b, c, and  have been calibrated for piles in compression to 

equal 33, 0.3, 0.5, and 2 (Lehane et al. 2005, 2008). For clays, ‘a’ is dependent on OCR and 

sensitivity, while ‘b’, ‘c’, and ‘’ have been preliminarily estimated as 0.1, 0.2, and 2, 

respectively (Schneider et al. 2010).  
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If the effects of friction fatigue, area ratio, ratio of tension to compression shaft capacity, change 

in radial effective stress during loading, and interface friction angle are ignored, the parameters 

c, b, 'rd, tanf and ft/fc in Equation 6.6 become equal to 0, 0, 0, 1, and 1, respectively. Equation 

6.6 therefore simplifies to: 

s

t
f

q


   (6.7) 

Equation 6.7 is commonly referred to as a CPT ‘alpha’ method. Eslami & Fellenius (1997) 

recommend using s equal to 250 for clean siliceous sands, and it is common to take s as 40 in 

clays. An intermediate value of s equal to 100 is often used in sandy silts and clayey silts. It is 

recommended to use s of 40 in heavily over consolidated clayey and loamy tills, if cone 

penetration is undrained. The parameter s is related to the parameter ‘a’ from Equation 5, but 

has a higher value since the effects of friction fatigue, area ratio, ratio of tension to compression 

shaft capacity, change in radial effective stress during loading, and interface friction angle are 

ignored. Use of simplified s values calibrated to empirical databases clearly induces bias when 

applied to conditions outside of the database used to calibrate the method. 

It is logical, and tempting, to try to use CPT fs to estimate pile shaft friction (e.g., Begemann 

1965). A comparison between average CPT fs and average pile f for databases of pile load tests 

in clays is shown in Figure 6.6. Two regimes of dominant behavior are identified from Figure 

6.6; (i) setup, where f,avg/fs,avg is greater than unity; and (ii) friction fatigue, where f,avg/fs,avg is 

less than unity. 
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6.3 Embankments on Soft Soils 

Embankments on soft soils involve three major design issues: 

 Stability, evaluated through the undrained strength 

 Magnitude of settlements 

 Time for settlements and strength increase to occur 

The cone penetration test is ideal to assess undrained strength and time dependent properties, and 

has some application to assessment of the magnitude of settlements.  

Cone penetration testing can reliably be used to evaluate soil strength at the time of testing 

through the cone factor Nk, as discussed in Section 5.2.4. To assess changes in strength with time 

under an embankment, both the change in in-situ effective stress and change in state (OCR) need 

to be quantified (i.e., Ladd 1991). Increases in effective stress due to consolidation under an 

embankment increase strength, but increases in effective stress reduce OCR that reduces the 

undrained strength ratio: 

  8.08.01
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 (6.8) 

To be able to understand changes in strength with time, the OCR and normalized undrained 

strength ratio need to be quantified. Mayne (2007) provides a thorough discussion of estimating 

OCR and/or preconsolidation stress from CPTU data. OCR correlations were not assessed in this 

study as no high quality preconsolidation stress data were available. 

Magnitude of settlements can be quantified by constrained modulus estimated from CPT 

(Section 5.2.2). The constrained modulus is relatively constant prior to the preconsolidation 

stress, but drops significantly for normally consolidated soils. In normally consolidated soils, 

constrained modulus will increase with increasing effective stress, and appropriate stress ranges 

must be used for assessment of compressibility.  
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Dissipation data can be very useful for evaluating time dependent behavior. For application to 

embankments, the dissipation results are directly applicable to radial drainage when using 

prefabricated vertical drains. Due to anisotropy in hydraulic conductivity and coefficient of 

consolidation, ch from dissipation tests may overestimate cv by up to an order of magnitude in 

varved clays. 
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7 Specialized Equipment and Non Standard Procedures 

7.1 Seismic Piezocone Penetration Test 

Methods for performing a seismic piezocone cone test (SCPTU) are highlighted in Chapter 3. 

The purpose of a SCPTU is to measure a fourth independent parameter, small strain shear 

stiffness (G0=Vs
2). Small strain stiffness needs to be reduced to operation values applicable to 

design, such as those discusses in Chapter 5. Methods for modulus reduction are discussed by 

Mayne (2007). 

The geophone in the SCPTU probe allows for the measurement of the seismic shear wave arrival 

time of the soils tested.  There are two basic setups for seismic measurements.  In a true interval 

system there are two geophones which measure shear wave arrival times over a set distance.  The 

alternative configuration known as the pseudo interval uses one geophone and the measurements 

are averaged over two readings. Incremental shear wave velocity, whether true interval or pseudo 

interval, is the change in distance traveled divided by the difference in arrival times for two 

successive shear waves, Vs = d/t. Comparisons between the two configurations indicate that 

the pseudo interval provides similar results to the true interval SCPTU (Robertson et al. 1986).  

Stiffness data from seismic cone can be compared to cone tip resistance, which is useful for 

identifying aged and cemented layers. Figure 7.1 shows shear waves collected at UW-1, and 

Figure 7.2 shows the process seismic cone profile. Additional seismic cone data is included in 

Appendix 2. 
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Table 7.1. Special techniques for increased success of cone penetration in hard geomaterials (after Mayne 2007) 
Advancing Technique Comments / Remarks Reference 
Downhole thrust system Single push stroke generally limited to 2 to 3m. 

Push to depths greater than 500ft below the 
seabed  are common by alternating push with 
drilling. 

Zuidberg (1974) 

Friction reducer Common to use on all soundings. Can have a 
variety of geometries, through tot be soil type 
specific. Less successful in very dense sands 

van de Graaf and 
Schenk (1988) 

Penetrometer that is a larger 
diameter than rods (i.e., 1.73 inch 
cone with 1.44 inch rods) 

Similar concept to friction reducer van de Graaf and 
Schenk (1988) 

Guide casing: Double set of rods, 
standard 1.44 inch rods supported 
inside larger 44mm rods to prevent 
buckling 

Works well for soft soils with dense soils at 
depth 

Peuchen (1988) 

Earth anchors Increases capacity for reaction. Difficult to use in 
construction fill. Purdue rig used with and 
without anchors during this project 

 

Heavy 20 ton deadweight CPT 
trucks and track rigs with central 
push 

Increased weight of reaction over standard drill 
rig 

Mayne et al. (1995) 

Mud injection Needs pump and line system for bentonitic slurry van Staveren (1995) 
ROTAP – Outer coring bit Special drilling cases through cemented zones Sterkx and van Calster 

(1995) 
Static – Dynamic penetrometer Switches from static mode to dynamic mode 

when needed 
Sanglerat et al. (1995) 

Cycling rods (up and down) May break through locally hard thin zones of soil Shinn (1995) 
Drill out (downhole CPTs) Alternate between drilling and pushing NNI (1996) 
Very heavy 30 and 40 ton rigs Mass may be added to 20 ton rig after it arrives at 

site or included on truck, depending on road 
weight restrictions. Mn/DOT operates one 30 ton 
rig. 

Bratton (2000) 

Sonic  CPT Use of vibrator to facilitate penetration through 
gravels and hard zones 

Bratton (2000) 

EAPS Wireline system for enhanced access 
penetrometer systems 

Farrington (2000); 
Shinn and Haas (2004); 
Farrington and Shinn 
(2006) 

CPTWD Cone penetration test while drilling Sacchetto et al. (2004) 

 



 

Figure 7.6 

 

CPT rigs

generally

difficulti

impedim

cone incl

cone test

Wireline 

materials

(2007): 

 CPTW

CPTWD wirel

s are availab

y only time

es with grou

ments. While 

lination. To 

ing system i

techniques 

s at depth in 

WD – cone p

line cone penet

ble that hav

e effective f

und conditio

these may 

penetrate th

is needed.  

show the m

a rapid and 

penetration w

tration system 

ve drilling c

for drilling 

ons encounte

not have re

hrough hard o

most promis

cost effectiv

while drilling

128 

(Sacchetto et a
 

capabilities (

through ne

ered during 

esulted in re

or cemented

se for achie

ve manner. T

g (Figure 7.6

al. 2004) 

(Figure 7.5)

ear surface 

this project 

efusal, they 

d layers at de

eving penetr

Two systems

6, Sacchetto

), however, 

impediment

were relate

often cause

epth, a comb

ration in har

s were highl

o et al. 2004)

this techniq

ts. Many o

d to near su

ed problems 

bined drilling

rd and cem

lighted by M

) 

que is 

of the 

urface 

with 

g and 

ented 

Mayne 



 

 EAPS

2004

 

These sy

to standa

technique

bridge sit

Figure 7.7 

 

S – Enhance

, Farrington 

stems have r

ard CPT sy

es, but has c

tes. 

EAPS wireline

ed access pen

& Shinn 20

reached pene

ystems. It i

chosen to go 

e cone penetrat

netrometer s

06) 

etrations in e

s noted tha

with a heav

tion system (F

129 

ystem (Figu

excess of 10

at Mn/DOT 

vier 30 ton ri

arrington 2000

ure 7.7, Farri

00 ft and sho

has not re

g to achieve

0) 

ington 2000,

ow comparab

equired the 

e 100 ft of pe

, Shinn & Ha

ble measurem

use of wir

enetration at

 

 

aas 

ments 

reline 

t their 



130 
 

8 Conclusions and Recommendations 

The objectives of this research were to evaluate the potential use of CPT technology for 

Wisconsin DOT projects. Tests were performed at sites in different geological conditions around 

the state and CPT results were compared to available data. This report was written to aid in 

understanding CPT data and how it relates to geologic history and engineering parameters. 

Analysis of the data compiled in the GIS will give the user more experience and familiarity with 

CPT results. 

Conclusions and recommendations will address the specific objectives of the project. 

Departmental subsurface investigative methods (generally soil borings) and cone penetrometer 

findings will be compared at a number of sites with differing soils and geology.  

Cone penetration in excess of 75 feet was achieved at sites in alluvium, outwash, and lake 

deposits. Difficulties were encountered in clay tills that had a significant amount of gravel and 

cobbles, as well as fill soils with gravel and cobbles. Commercial firms that performed testing 

for the Marquette Interchange and Mitchell Interchange project had slightly better success in 

Clay tills, reaching a maximum penetration depth of 92 feet for the Marquette interchange.  

While the databases for evaluating soil engineering parameters from CPT data does not need the 

intermediate step of CPT-SPT correlations, some interesting observations occurred from 

comparing those parameters. The correlations between SPT N-value and CPT tip resistance at 

WisDOT sites indicated higher ratios and more scatter compared to data from Mn/DOT. 

Mn/DOT uses corrected blowcounts with calibrated hammer energies. Correction of SPT 

blowcount for energy and other factors would be expected to result in more reliable site 

investigation than current practice. 

Evaluation of design parameters will be compared. 

Comparison between CPT data and engineering parameters was available for: 
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 Coefficient of consolidation 

 Constrained modulus 

 Shear stiffness of undrained clays 

 Undrained strength, and 

 Soil type 

Good correlation was achieved for coefficient of consolidation and soil type (using soil behavior 

type charts updated for this project). The small amount of data and questionable quality for 

constrained modulus, preconsolidation stress (not discussed), shear stiffness, and undrained 

strength did not allow for conclusions to be drawn.  

Although no data from Wisconsin were available, global databases were used to provide 

discussion of: 

 drained friction angle in sands 

 shear stiffness of sands (shallow foundation settlements in sands) 

 axial pile capacity; and 

 embankment performance 

Discuss advantages and limitations of CPT equipment, operations and interpretation will be 

presented. 

Testing in Wisconsin and comparison to existing data reinforced existing experience related to 

the CPT: 

Advantages 

 CPT data are of higher quality than SPT or laboratory samples collected using current 

practice 

 CPT results are available quicker than drilling, sampling, and lab testing 
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 The high volume of CPT data gives confidence in the ability to assess uncertainties and 

variability in soil conditions at a given site. 

Disadvantages 

 CPT may meet refusal due to changes in inclination if gravel or cobbles are present 

 CPTs in excess of 100 ft were not achieved in this study 

These disadvantages have been overcome by Mn/DOT and local CPT contractors in that area. 

Commercial CPT contractors are expected to have more success in achieving deep penetration 

than achieved in this research project, mainly due to the available capital to handle damage to 

CPT equipment.  

Detailed suggestions for the application of this technology on WisDOT projects will be 

presented. 

It has taken some time for Mn/DOT to use the CPT on a wide range of projects. WisDOT should 

not expect immediate success and cost savings from use of the CPT. They will need to constantly 

evaluate and update their site investigation experience. The electronic GIS provided with this 

project provides a framework where experience can be collected and rapidly reviewed. However, 

for the use of the CPT to be successful on a high percentage of Wisconsin DOT projects, an in 

house champion is needed to promote use of the technology and guide its application.  

For future projects, it is recommended to perform more CPTs than borings, and to start the CPT 

program a week or two before the drilling program. This will still require mobilization of two 

rigs, but if the CPT is not successful, the scope of the drillers can be expanded. Perform targeted 

sampling of critical and representative layers, not sampling on standard intervals. Borings should 

be performed adjacent to CPTs and the drillers need to take high quality samples. The sample 

quality and results of strength testing (i.e., UU and UC) observed in this study does not produce 

reliable results, making it difficult to assess uncertainty, reliability, and levels of conservatism in 
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design. High quality sampling proposed for the DOT-1 site should be a good first step to 

improving practice and understanding the inherent assumptions behind successful designs. 

Ideally, each of the 23 representative layers evaluated in detail in this report would have high 

quality sampling and laboratory testing performed at some time in the future. Only with 

consistent evaluations from laboratory and in-situ test data can practice move forward and cost 

savings be realized.    
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Location of cone penetration tests reviewed from previous investigations 
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area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.

State Location

�

Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (June 25, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 3

I-494 over Mississippi River
Washington County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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�

Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (June 25, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 4

STH 210 near St. Louis River
Carlton County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (June 30, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 5

I-12 Sound Barrier
Hennepin County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.

State Location

�

Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (June 30, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 6

STH 65 and Little Fork River
Koochiching County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (June 22, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 7

USH-14 near Janesville
Waseca County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (June 25, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 8

STH-65 over Little Fork River
Koochiching County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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�

Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (July 11, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 9

STH-101 near Lake Susan
Carver County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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�

Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (July 11, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 10

USH-169 in Blue Earth City
Faribault County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (July 11, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 11

STH 171 near the Red River
Kittson County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (July 7, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 12

STH-9 on Chippewa River
Swift County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (July 7, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 13

STH-23 Near Spicer
Kandiyohi County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (July 11, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 14

Swan River and STH 238
Morrison County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (June 22, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 15

USH 169 & STH 19
LeSueur County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (June 22, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 16

STH 65 at Johnsville
Anoka County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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�

Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (June 30, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 17

STH 23 & S. Fork Nemadji River
Carlton County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (July 7, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 18
STH 5 in Victoria

Carver County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (July 7, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 19

USH 61 & Onion River
Cook County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (July 7, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Site Location Maps
Minnesota Site 20
IH-90 near Dakota

Winona County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (July 7, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Reviewed By: JAS

Site Location Maps
Minnesota Site 21

USH 63 near Rochester
Olmsted County, MN

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (July 7, 2011)
Minnesota Dept. of Natural Resources. "Minnesota State Outline."
[ESRI Shapefile]. Created by Minnesota DNR - MIS Bureau, 2007.
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Date: August 9, 2011
Map By: JNH

Reviewed By: JAS

Site Location Maps
Mitchell Interchange

Milwaukee County

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the site investigation.

State Location

�

Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (August 9, 2011)
United States Geological Survey. “April 2007 Color Orthoimagery – Madison, WI” [aerial photographs].  USGS, 2007.
   Accessed online http://seamless.usgs.gov/ (August 9, 2011).
Wisconsin Dept. of Natural Resources. “Wisconsin State Outline.” [ESRI Shapefile]. Created by
   U. S. Census Bureau, 2008.
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Site Location Maps
Marquette Interchange

Milwaukee County

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the site investigation.
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (August 9, 2011)
United States Geological Survey. “April 2007 Color Orthoimagery – Madison, WI” [aerial photographs].  USGS, 2007.
   Accessed online http://seamless.usgs.gov/ (August 9, 2011).
Wisconsin Dept. of Natural Resources. “Wisconsin State Outline.” [ESRI Shapefile]. Created by
   U. S. Census Bureau, 2008.
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Appendix 2 

 

Cone penetration tests completed during this study 
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Date: August 25, 2010
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Site Location Maps
WHRP Site UW-1

Madison, Dane County

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the site investigation.
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (August 25, 2010)
United States Geological Survey. “April 2007 Color Orthoimagery – Madison, WI” [aerial photographs].  USGS, 2007.
   Accessed online http://seamless.usgs.gov/ (August 25, 2010).
Wisconsin Dept. of Natural Resources. “Wisconsin State Outline.” [ESRI Shapefile]. Created by
   U. S. Census Bureau, 2008.

��

��������
��

UW-1

Long-11

��
UW-1

�
��
����
����

BH-4

CPTU1-05
CPTU2-04
CPTU2-03

SCPTU2-02

SCPTU2-01

4
Kilometers

ESRI Aerial Photo - Scale 1:24,000

City Location

0 750 1,500375 Meters

Madison Orthoimagery (April 2007) - Scale 1:1,000

0 25 5012.5 Meters

4
Miles

0 2,500 5,0001,250 Feet 0 90 18045 Feet

Symbols

� Borehole

�� CPT

Site: UW-1 Sounding: SCPTU2-01 Termination Depth: 92.4 Feet
Description: Observatory Drive - 1918 Marsh Date: 7/20/2010 qt fs u2 Total Dissipations: 27

 Boring Date: 7/8/2010 Operator: James S. and Finn H. 11.1 4.0 1.0 Dissipation Time: 87 minutes

Baseline Zero Shifts (%)

Boring BH-4

0 50 100 150

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600

N (blowcounts)

D
e

p
th

 (f
e

e
t)

qt (tsf)

CPT tip

BH-4 N#

0 5 10 15

F (%)

-1 0 1 2 3 4 5 6

u2 (tsf)

PWP

Hydrostatic

Dissipations

Firm brown moist mottled lean CLAY 
(CL) w/ some sand lenses

Loose black wet SILTY SAND (SM)

Soft to firm black moist ORGANIC SILT 
(OH)

Firm light gray elastic SILT (MH)

Very dense light gray wet poorly graded 
SAND (SP)

Dense light gray moist pooly graded 
SAND (SP)

Hard gray wet lean CLAY (CL)

Hard light gray moist lean CLAY (CL)

Dense tan to light gray poorly graded 
SAND (SP)

V. dense poorly graded SAND (SP)

Blind Drilling

Dense tan poorly graded SAND (SP)

Blind Drilling

0 500 1000 1500 2000

Vs (ft/sec)



Site: UW-1 Sounding: SCPTU2-02 Termination Depth: 90.6 Feet
Description: Observatory Drive - 1918 Marsh Date: 7/21/2010 qt fs u2 Total Dissipations: 27

 Boring Date: 7/8/2010 Operator: James S. 0.0 3.2 3.9 Dissipation Time: 87 minutes
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Site: UW-1 Sounding: CPTU2-03 Termination Depth: 51.6 Feet
Description: Observatory Drive - 1918 Marsh Date: 7/21/2010 qt fs u2 Total Dissipations: 18

 Boring Date: 7/8/2010 Operator: James S. 17.9 1.9 3.4 Dissipation Time: 76 Minutes
Advance Rate: 100 mm/s
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Site: UW-1 Sounding: CPTU2-04 Termination Depth: 43.7 Feet
Description: Observatory Drive - 1918 Marsh Date: 7/25/2010 qt fs u2 Total Dissipations: 14

 Boring Date: 7/8/2010 Operator: James S. -5.0 1.3 3.0 Dissipation Time: 441 minutes
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Site: UW-1 Sounding: CPTU1-05 Termination Depth: 13.1 Feet
Description: Observatory Drive - 1918 Marsh Date: 7/26/2010 qt fs u2 Total Dissipations: 5

 Boring Date: 7/8/2010 Operator: Finn H. -10.6 -6.0 -1.3 Dissipation Time: 188 minutes
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Date: June 10, 2011
Map By: EMM

Reviewed By: JAS

Site Location Maps
WHRP Site Long-10

Middleton, Dane County

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.

State Location

�

Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (August 17, 2010)
United States Geological Survey. “July 2007 Color Orthoimagery – Madison, WI”
   [aerial photographs].  USGS, 2007. Accessed online http://seamless.usgs.gov/ [8/17/2010].
Wisconsin Dept. of Natural Resources. “Wisconsin State Outline.” [ESRI Shapefile]. Created by
   U. S. Census Bureau, 2008.
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Description: Pedestrian Bridge & Pheasant Branch Crk. Date: 10/5/2010 qt fs u2 Total Dissipations: 23

 Boring Date: Operator: Finn H., Elliott M. & James S. 17.9 1.9 3.4 Dissipation Time: 130 Minutes

Boring Terminated at 101 feet

Baseline Zero Shifts (%)
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Site: Long-10 Sounding: CPTU2-04 Termination Depth: 26.5 Feet
Description: Pedestrian Bridge & Pheasant Branch Crk. Date: 6/7/2011 qt fs u2 Total Dissipations: 0

 Boring Date: Operator: Seth S. & Finn H. N/A N/A N/A Dissipation Time: 0

Boring Terminated at 101 feet

Baseline Zero Shifts (%)

Feb. - Mar. 2000
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Site: Long-10 Sounding: CPTU2-05 Termination Depth: 26.5 Feet
Description: Pedestrian Bridge & Pheasant Branch Crk. Date: 6/7/2011 qt fs u2 Total Dissipations: 0

 Boring Date: Operator: Seth S. & Finn H. N/A N/A N/A Dissipation Time: 0

Boring Terminated at 101 feet

Baseline Zero Shifts (%)

Feb. - Mar. 2000
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Site: Long-10 Sounding: CPTU2-06 Termination Depth: 26.0 Feet
Description: Pedestrian Bridge  & Pheasant Branch Crk. Date: 6/8/2011 qt fs u2 Total Dissipations: 0

 Boring Date: Operator: Finn H. & Seth S. 6.9 4.2 3.4 Dissipation Time: 0

Boring Terminated at 101 feet

Baseline Zero Shifts (%)

Feb. - Mar. 2000
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Site: Long-10 Sounding: CPTU2-07 Termination Depth: 42.5 Feet
Description: Pedestrian Bridge & Pheasant Branch Crk Date: 6/8/2011 qt fs u2 Total Dissipations: 2

 Boring Date: Operator:  Finn H. & Seth S. 20.2 3.1 0.7 Dissipation Time: 3 Minutes

Boring Terminated at 101 feet

Baseline Zero Shifts (%)
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Site: Long-10 Sounding: CPTU2-08 Termination Depth: 45.1 Feet
Description: Pedestrian Bridge & Pheasant Branch Crk. Date: 6/9/2011 qt fs u2 Total Dissipations: 2

 Boring Date: Operator: Finn H. & Seth S. 2.3 -2.7 6.6 Dissipation Time: 7 Minutes

Boring Terminated at 101 feet

Baseline Zero Shifts (%)

Feb. - Mar. 2000
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Site: Long-10 Sounding: CPTU2-09 Termination Depth: 22.8 Feet
Description: Pedestrian Bridge & Pheasant Branch Crk. Date: 6/8/2011 qt fs u2 Total Dissipations: 0

 Boring Date: Operator: Seth S. & Finn H. N/A N/A N/A Dissipation Time: 0

Boring Terminated at 101 feet

Baseline Zero Shifts (%)

Feb. - Mar. 2000
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Project No: 0092-10-10
Map Projection: NAD 1983

Map Scale: Varies
Date: October 12, 2010

Map By: EMM
Reviewed By: JAS

Site Location Maps
WHRP Site Long-12

Middleton, Dane County, WI

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (August 17, 2010)
United States Geological Survey. “April 2007 Color Orthoimagery – Madison, WI” [aerial photographs].  USGS, 2007.
   Accessed online http://seamless.usgs.gov/ [8/17/2010].
Wisconsin Dept. of Natural Resources. “Wisconsin State Outline.” [ESRI Shapefile]. Created by
   U. S. Census Bureau, 2008.
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Site: Long-12 Sounding: SCPTU2-04 Termination Depth: 62.8 Feet
Description: USH-12 Middleton, WI Date: 10/10/2010 qt fs u2 Total Dissipations: 3

 Boring Date: Operator: Finn H. 0.5 1.1 1.0 Dissipation Time: 55 minutes

Baseline Zero Shifts (%)
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Project No: 5300-03-78
Map Projection: NAD 1983

Map Scale: Varies
Date: August 25, 2010

Map By: EMM
Reviewed By: JAS

Site Location Maps
WHRP Site Long-13

Middleton, Dane County, WI

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.

State Location

�

Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (August 17, 2010)
United States Geological Survey. “April 2007 Color Orthoimagery – Madison, WI” [aerial photographs].  USGS, 2007.
   Accessed online http://seamless.usgs.gov/ [8/17/2010].
Wisconsin Dept. of Natural Resources. “Wisconsin State Outline.” [ESRI Shapefile]. Created by
   U. S. Census Bureau, 2008.
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Site: Long-13 Sounding: CPTU2-05 Termination Depth: 56.2 Feet
Description: US-12 over Murphy Road, Middleton Date: 10/13/2010 qt fs u2 Total Dissipations: 2

 Boring Date: Operator: Finn H. & Elliott M. 3.9 -0.6 0.2 Dissipation Time: 15 minutes

Boring Terminated at 222 feet
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Project No: 0092-10-10
Map Projection: NAD 1983

Map Scale: Varies
Date: August 16, 2010

Map By: JNH
Reviewed By: JAS

Site Location Maps
WHRP Site DOT-7

Middleton, Dane County, WI

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.

State Location

�

Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (August 17, 2010)
United States Geological Survey. “April 2007 Color Orthoimagery – Madison, WI” [aerial photographs].  USGS, 2007.
   Accessed online http://seamless.usgs.gov/ [8/17/2010].
Wisconsin Dept. of Natural Resources. “Wisconsin State Outline.” [ESRI Shapefile]. Created by
   U. S. Census Bureau, 2008.
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Site: DOT-7 Sounding: CPTU2-01 Termination Depth: 33.7 Feet
Description: Middleton, WI Date: 10/14/2010 qt fs u2 Total Dissipations: 7

 Boring Date: Operator: James S. & Finn H. 4.2 1.7 0.2 Dissipation Time: 61 minutes

Baseline Zero Shifts (%)
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Site: DOT-7 Sounding: CPTU2-02 Termination Depth: 14.1 Feet
Description: Middleton, WI Date: 10/14/2010 qt fs u2 Total Dissipations: 5

 Boring Date: Operator: James S. & Finn H. 9.9 1.8 0.3 Dissipation Time: 1107 minutes

Baseline Zero Shifts (%)
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Site: DOT-7 Sounding: CPTU2-03/03a Termination Depth: 42.6 Feet
Description: Middleton, WI Date: 10/16/2010 qt fs u2 Total Dissipations: 5

 Boring Date: Operator: James S. & Finn H. -1.1 -0.5 0.3 Dissipation Time: 534 minutes

Baseline Zero Shifts (%)
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Site: DOT-7 Sounding: CPTU2-04 Termination Depth: 14.9 Feet
Description: Airport Road, Middleton, WI Date: 6/1/2011 qt fs u2 Total Dissipations: 5

 Boring Date: Operator: James S., Finn H., Seth S. -4.3 1.9 2.3 Dissipation Time: 317 minutes

Baseline Zero Shifts (%)
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Site: DOT-7 Sounding: CPTU2-05 Termination Depth: 12.3 Feet
Description: Airport Road, Middleton, WI Date: 6/1/2011 qt fs u2 Total Dissipations: 4

 Boring Date: Operator: James S., Finn H., Seth S. -1.7 -5.1 0.7 Dissipation Time: 483 minutes
Advance Rate: 0.01 mm/s

Baseline Zero Shifts (%)
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Site: DOT-7 Sounding: CPTU2-06 Termination Depth: 13.0 Feet
Description: Airport Road, Middleton, WI Date: 6/2/2011 qt fs u2 Total Dissipations: 4

 Boring Date: Operator: Finn H. & Seth S. -10.3 -2.2 2.6 Dissipation Time: 257 minutes
Advance Rate: 1.6 mm/s

Baseline Zero Shifts (%)
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Site: DOT-7 Sounding: CPTU2-07 Termination Depth: 12.8 Feet
Description: Airport Road, Middleton Date: 6/3/2011 qt fs u2 Total Dissipations: 4

 Boring Date: Operator: James S. & Seth S. -1.7 1.6 0.9 Dissipation Time: 213 minutes
Advance Rate: 50 mm/s

Baseline Zero Shifts (%)
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Site: DOT-7 Sounding: CPTU2-08 Termination Depth: 25.9 Feet
Description: Airport Road, Middleton Date: 6/3/2011 qt fs u2 Total Dissipations: 0

 Boring Date: Operator: Seth S. and Finn H. N/A N/A N/A Dissipation Time: 0
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Map Projection: NAD 1983

Map Scale: Varies
Date: August 30, 2010

Map By: EMM
Reviewed By: JNH

Site Location Maps
WHRP Site Long-11

Middleton, Dane County, WI

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.

State Location

�

Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (August 17, 2010)
United States Geological Survey. “April 2007 Color Orthoimagery – Madison, WI” [aerial photographs].  USGS, 2007.
   Accessed online http://seamless.usgs.gov/ [8/17/2010].
Wisconsin Dept. of Natural Resources. “Wisconsin State Outline.” [ESRI Shapefile]. Created by
   U. S. Census Bureau, 2008.
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Site: Long-11 Sounding: CPTU2-01 Termination Depth: 23.9 Feet
Description: USH-12 Middleton, WI Date: 10/18/2010 qt fs u2 Total Dissipations: 1

 Boring Date: Operator: Finn H. & Skyler N. 4.9 -1.6 -2.1 Dissipation Time: 6 minutes

Boring Terminated at 142 feet
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Site: Long-11 Sounding: CPTU2-02 Termination Depth: 53.2 Feet
Description: Middleton, WI Date: 10/18/2010 qt fs u2 Total Dissipations: 7

 Boring Date: Operator: Finn H., Elliott M. & James S. 4.1 1.3 1.8 Dissipation Time: 44 minutes

Boring Terminated at 142 feet

Baseline Zero Shifts (%)
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Project No: 0092-10-10
Map Scale: Varies

Date: January 28, 2011
Map By: JNH

Reviewed By: JAS

Plate 1: Site Location Map
WHRP Site DOT-1

Howard, Brown County

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the roadway design.

State Location

�

Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (August 24, 2010)
United States Geological Survey. “July 2007 Color Orthoimagery – Green Bay / Appleton / Oshkosh, WI”
   [aerial photographs].  USGS, 2007. Accessed online http://seamless.usgs.gov/ [8/24/2010].
Wisconsin Dept. of Natural Resources. “Wisconsin State Outline.” [ESRI Shapefile]. Created by
   U. S. Census Bureau, 2008.
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Site: DOT-1 Sounding: SCPTU2-01 Termination Depth: 59.7 Feet
Description: Village of Howard, WI Date: 10/28/2010 qt fs u2 Total Dissipations: 17

 Boring Date: Operator: James S. & Finn H. 0.5 -1.6 -1.7 Dissipation Time: 1050 minutes
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Site: DOT-1 Sounding: CPTU2-02 Termination Depth: 69.9 Feet
Description: Howard, WI Date: 10/29/2010 qt fs u2 Total Dissipations: 19

 Boring Date: Operator: James S. & Finn H. 6.5 -1.0 -2.6 Dissipation Time: 2191 minutes
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Site: DOT-1 Sounding: C-3 Termination Depth: 3.3 Feet
Description: Howard, WI Date: 1/30/1900 qt fs u2 Total Dissipations:

 Boring Date: Operator: Finn H. & Elliott M. Dissipation Time:
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Site: DOT-1 Sounding: C-4 Termination Depth: 3.3 Feet
Description: Howard, WI Date: 1/30/1900 qt fs u2 Total Dissipations:

 Boring Date: Operator: Finn H. & Elliott M. Dissipation Time:
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Site: DOT-1 Sounding: C-5 Termination Depth: 3.3 Feet
Description: Howard, WI Date: 1/30/1900 qt fs u2 Total Dissipations:

 Boring Date: Operator: Finn H. & Elliott M. Dissipation Time:
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Project No: 0092-10-10
Map Scale: Varies

Date: August 16, 2010
Map By: JNH

Reviewed By: JAS

Site Location Maps
WHRP Site DOT-16

Winchester, Winnebago County

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.

State Location

�

Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (August 17, 2010)
United States Geological Survey. “July 2007 Color Orthoimagery – Green Bay / Appleton / Oshkosh, WI”
   [aerial photographs].  USGS, 2007. Accessed online http://seamless.usgs.gov/ [8/17/2010].
Wisconsin Dept. of Natural Resources. “Wisconsin State Outline.” [ESRI Shapefile]. Created by
   U. S. Census Bureau, 2008.
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Site: DOT-16 Sounding: SCPTU2-01a Termination Depth: 90.6 Feet
Description: Winchester, WI Date: 11/6/2010 qt fs u2 Total Dissipations: 8

 Boring Date: 3/20/2001 Operator: Finn H. & Skyler N. 9.7 -2.4 3.7 Dissipation Time: 37 minutes

Boring Terminated at 50 feet bgs
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Site: DOT-16 Sounding: SCPTU2-02/02a Termination Depth: 90.6 Feet
Description: Winchester, WI Date: 11/6/2010 qt fs u2 Total Dissipations: 4

 Boring Date: 3/21/2001 Operator: Finn H. & Skyler N. 1.2 0.0 -2.2 Dissipation Time: 16 minutes

Boring Terminated at 47 feet bgs
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Site: DOT-16 Sounding: CPTU2-03 Termination Depth: 90.6 Feet
Description: Winchester, WI Date: 11/7/2010 qt fs u2 Total Dissipations: 4

 Boring Date: Operator: Finn H. & Skyler N. 18.0 0.7 -1.4 Dissipation Time: 28 minutes

Boring Terminated at 35 feet BGS

Baseline Zero Shifts (%)
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Site: DOT-16 Sounding: SCPTU2-04 Termination Depth: 90.6 Feet
Description: Winchester, WI Date: 11/7/2010 qt fs u2 Total Dissipations: 8

 Boring Date: 3/20/2001 Operator: Finn H. & Skyler N. 4.2 -67.2 0.7 Dissipation Time: 94 minutes

Baseline Zero Shifts (%)
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Project No: 0092-10-10
Map Scale: Varies

Date: August 25, 2010
Map By: JNH

Reviewed By: JAS

Site Location Maps
WHRP Site DOT-10

Plymouth, Sheboygan County

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.

State Location

�

Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (August 25, 2010)
Wisconsin Dept. of Natural Resources. “Wisconsin State Outline.” [ESRI Shapefile]. Created by
   U. S. Census Bureau, 2008.
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Project No: 0092-10-10
Map Scale: Varies

Date: August 25, 2010
Map By: JNH

Reviewed By: JAS

Site Location Maps
WHRP Site DOT-10a

Plymouth, Sheboygan County

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.

State Location

�

Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (August 25, 2010)
Wisconsin Dept. of Natural Resources. “Wisconsin State Outline.” [ESRI Shapefile]. Created by
   U. S. Census Bureau, 2008.
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Site: DOT-10a Sounding: CPTU2-01 Termination Depth: 5.6 Feet
Description: Plymouth, WI Date: 11/15/2010 qt fs u2 Total Dissipations: 1

 Boring Date: Operator: Elliott M. & James S. -4.2 -0.8 6.2 Dissipation Time: 6 minutes

Boring Terminated at 28 feet

Baseline Zero Shifts (%)
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Site: DOT-10a Sounding: C-3 Termination Depth: 8.0 Feet
Description: Plymouth, WI Date: 11/16/2010 qt fs u2 Total Dissipations:

 Boring Date: Operator: Elliott M. & James S. Dissipation Time:

Boring Terminated at 28 feet
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Site: DOT-10a Sounding: CPTU2-02 Termination Depth: 7.5 Feet
Description: Plymouth, WI Date: 11/18/2010 qt fs u2 Total Dissipations: 1

 Boring Date: Operator: Finn H. & Elliott M. 3.0 -0.6 -0.7 Dissipation Time: 1 minute

Boring Terminated at 35 feet
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Project No: 0092-10-10
Map Scale: Varies

Date: August 25, 2010
Map By: JNH

Reviewed By: JAS

Site Location Maps
WHRP DOT-10b

Plymouth, Sheboygan County

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.

State Location

�

Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (August 25, 2010)
Wisconsin Dept. of Natural Resources. “Wisconsin State Outline.” [ESRI Shapefile]. Created by
   U. S. Census Bureau, 2008.
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Site: DOT-10b Sounding: SCPTU2-02 Termination Depth: 18.0 Feet
Description: Plymouth, WI Date: 11/19/2010 qt fs u2 Total Dissipations: 5

 Boring Date: Operator: Finn H. & James S. 6.1 -0.5 0.5 Dissipation Time: 67 minutes
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Site: DOT-10b Sounding: SCPTU2-01 Termination Depth: 12.0 Feet
Description: Plymouth, WI Date: 11/19/2010 qt fs u2 Total Dissipations: 4

 Boring Date: Operator: Finn H. & Elliott M. 8.0 -1.4 2.1 Dissipation Time: 84 minutes
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Site: DOT-10b Sounding: SCPTU2-03 Termination Depth: 0.0 Feet
Description: Plymouth, WI Date: 11/20/2010 qt fs u2 Total Dissipations: 2

 Boring Date: Operator: Finn H. & James S. -1.3 0.5 3.5 Dissipation Time: 48 minutes
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Site: DOT-10b Sounding: SCPTU2-04/04a Termination Depth: 23.7 Feet
Description: Plymouth, WI Date: 11/20/2010 qt fs u2 Total Dissipations: 6

 Boring Date: Operator: Finn H. & James S. 5.9 9.0 10.5 Dissipation Time: 185 minutes
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Site: DOT-10b Sounding: SCPTU2-05 Termination Depth: 12.5 Feet
Description: Plymouth, WI Date: 11/20/2010 qt fs u2 Total Dissipations: 2

 Boring Date: Operator: Finn H. & James S. -2.7 -2.2 -3.0 Dissipation Time: 41 minutes
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Project No: 0092-10-10
Map Scale: Varies

Date: August 25, 2010
Map By: JNH

Reviewed By: JAS

Site Location Maps
WHRP Site DOT-10c

Sheboygan Falls, 
Sheboygan County

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.

State Location

�

Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (August 25, 2010)
Wisconsin Dept. of Natural Resources. “Wisconsin State Outline.” [ESRI Shapefile]. Created by
   U. S. Census Bureau, 2008.
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Site: DOT-10c Sounding: CPT-01 Termination Depth: 19.4 Feet
Description: Sheboygan Falls, WI Date: 11/22/2010 qt fs u2 Total Dissipations: 0

 Boring Date: Operator: Finn H. & James S. 3.8 -1.4 -1.9 Dissipation Time: 0
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Site: DOT-10c Sounding: SCPTU2-02 Termination Depth: 25.6 Feet
Description: STH 23 & STH 32, Sheboygan Falls, WI Date: 11/28/2010 qt fs u2 Total Dissipations: 8

 Boring Date: Operator: Finn H., James S., Elliott M. 7.3 0.0 3.1 Dissipation Time: 2887 minutes
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Site: DOT-10c Sounding: CPTU2-03 Termination Depth: 19.5 Feet
Description: STH 23 & STH 32, Sheboygan Falls, WI Date: 6/4/2011 qt fs u2 Total Dissipations: 4

 Boring Date: Operator: James S., Finn H., Seth S. -3.9 0.6 2.7 Dissipation Time: 640 minutes
Advance Rate: 0.1 mm/sec

Baseline Zero Shifts (%)
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Site: DOT-10c Sounding: CPTU2-04 Termination Depth: 22.5 Feet
Description: STH 23 & STH 32, Sheboygan Falls, WI Date: 6/5/2011 qt fs u2 Total Dissipations: 6

 Boring Date: Operator: Finn H., Seth S. 0.2 -4.6 9.1 Dissipation Time: 700 minutes
Advance Rate: 1.6 mm/sec
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Site: DOT-10c Sounding: CPTU2-05 Termination Depth: 21.2 Feet
Description: STH 23 & STH 32, Sheboygan Falls, WI Date: 6/6/2011 qt fs u2 Total Dissipations: 2

 Boring Date: Operator: Finn H., Seth S. -6.2 1.0 -8.2 Dissipation Time: 10 minutes

Baseline Zero Shifts (%)
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Site: DOT-10c Sounding: CPTU2-06 Termination Depth: 20.0 Feet
Description: STH 23 & STH 32, Sheboygan Falls, WI Date: 6/7/2011 qt fs u2 Total Dissipations: 0

 Boring Date: Operator: Seth S. & Finn H. N/A N/A N/A Dissipation Time: 0

Baseline Zero Shifts (%)
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Project No: 0092-10-10
Map Scale: Varies
Date: April 5,2011

Map By: JNH
Reviewed By: JAS

Site Location Maps
WHRP Site DOT-3R

STH-23 & Wisconsin River
Sauk County

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.

State Location
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (August 24, 2010)
Wisconsin Dept. of Natural Resources. “Wisconsin State Outline.” [ESRI Shapefile]. Created by
   U. S. Census Bureau, 2008.
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Site: DOT-3R Sounding: CPTU2-01 Termination Depth: 74.5 Feet
Description: Spring Green, WI Date: 3/31/2011 qt fs u2 Total Dissipations: 0

 Boring Date: Operator: Finn H. & James S. -2.6 1.3 3.0 Dissipation Time: 0

Baseline Zero Shifts (%)
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Site: DOT-3R Sounding: SCPTU2-01 Termination Depth: 78.0 Feet
Description: Spring Green, WI Date: 4/1/2011 qt fs u2 Total Dissipations: 24

 Boring Date: Operator: Finn & James 3.0 0.6 -3.7 Dissipation Time: 172 minutes
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Site: DOT-3R Sounding: CPTU2-03 Termination Depth: 73.4 Feet
Description: Spring Green Date: 4/1/2011 qt fs u2 Total Dissipations: 8

 Boring Date: Operator: Finn H. & James S. -2.6 0.1 2.3 Dissipation Time: 40 minutes

Baseline Zero Shifts (%)
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Site: DOT-3R Sounding: CPTU2-04 Termination Depth: 73.5 Feet
Description: Spring Green, WI Date: 4/1/2011 - 4/2/2011 qt fs u2 Total Dissipations: 15

 Boring Date: Operator: Finn H. & James S. 3.0 -1.6 0.8 Dissipation Time: 339 minutes
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1964

Boring 1

Boring Terminated at 79 feet bgs 0 25 50 75 100

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400

N (blowcounts)

D
ep

th
 (

fe
e

t)

qt (tsf)

CPT tip

Bor-1 N#

0 5 10

F (%)

-1 1 3 5 7 9 11

u2 (tsf)

PWP

Hydrostatic

Dissipations

Water

Loose Gray Med. to Coarse SAND (SP)

Loose Gray Med. to Coarse SAND (SP) 
Little Gravel

Firm lt. Gray Fine to Med. SAND (SP)

Firm Brown Med to Coarse SAND (SP) 
Trace Gravel

Red CLAY (CL) Some Silt Tr. Sand

Firm Brown Med. to Coarse SAND (SP) 
Little Fine Gravel

0 500 1000 1500

Vs (ft/s)



Site: DOT-3R Sounding: CPTU2-05 Termination Depth: 73.6 Feet
Description: Spring Green, WI Date: 4/2/2011 qt fs u2 Total Dissipations: 5

 Boring Date: Operator: Finn H. & James S. -8.6 -2.8 4.9 Dissipation Time: 15 minutes

Baseline Zero Shifts (%)
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Map Scale: Varies

Date: April 13, 2011
Map By: JNH

Reviewed By: JAS

Site Location Maps
WHRP Site Long-8

US-12, Dane County

Description:

The intent of this map is to provide information on the site location
and layout of the investigation.  Several sources of data were compiled
to generate these maps of varying scales.  The map scale decreases,
area shown decreases, from left to right.  Site location is shown from a
state level, to city level, to aerial photo and finally a detailed site aerial
photo with locations of specific borings conducted for the bridge design.

State Location
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Source Maps:

DeLorme. Delorme World Basemap [Computer Map]. 1:288,000. [Online Database]. 2009.
ESRI ArcGIS Online, World Imagery [Aerial Photographs]. Visual Scale. http://www.arcgis.com/home/group.html?
   owner=esri&title=ESRI%20Maps%20and%20Data. (August 24, 2010)
Wisconsin Dept. of Natural Resources. “Wisconsin State Outline.” [ESRI Shapefile]. Created by
   U. S. Census Bureau, 2008.
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Site: Long-8 Sounding: CPTU2-01 Termination Depth: 9.5 Feet
Description: Roxbury, WI Date: 4/3/2011 qt fs u2 Total Dissipations: 0

 Boring Date: Operator: Finn H. & James S. 6.9 -1.9 -1.5 Dissipation Time: 0

Baseline Zero Shifts (%)
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Boring Terminated at 91.5 feet
0 15 30 45 60 75 90

0

10

20

30

40

50

60

70

80

90

100

0 60 120 180 240 300 360

N (blowcounts)

D
ep

th
 (

fe
e

t)

qt (tsf)

CPT tip

Bor. 1 N #

0 5 10

F (%)

-1 0 1 2 3

u2 (tsf)

PWP

Hydrostatic

Sandy Silt

Medium Dense Medium to Fine 
Grained SAND (SP) w/ Gravel

Medium Dense Fine to Coarse Grained 
SAND (SP) with Trace Gravel

Dense Silty SAND (SM)

Dense Gray to Brown SAND (SM) 
some Silt

Medium Dense to Dense Fine to 
Medium Grained SAND (SP) 

Dense Brown Fine to Medium Grained 
SAND (SP)

Site: Long-8 Sounding: CPTU2-02/02a Termination Depth: 6.8 Feet
Description: Roxbury, WI Date: 4/3/2011 qt fs u2 Total Dissipations: 0

 Boring Date: Operator: Finn H. & James S. 1.9 -2.1 1.5 Dissipation Time: 0

Baseline Zero Shifts (%)
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Boring Terminated at 91.5 feet
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Cone penetration test site summaries 

  



Previous investigations in Minnesota 
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Previous investigations in Milwaukee county 
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Testing from this study – sorted by site 
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Testing from this study – sorted by inferred predominant geologic origin 
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Appendix 4 

 

Supplemental soil borings and laboratory data performed for this study 

  



 

 

 

Long-10 

 Auger Boring with Classification and Grain Size Summary 
 Grain Size Analysis Curves 

  



Sample

Midpoint
Depth

(meters) Descripton (Visual) USCS

mc

(%)
Fines
(%)

D10

(mm)
D30

(mm)
D50

(mm)
D60

(mm) CC Cu Notes:
0 0.05 Topsoil - Dark Brown Mottled SILTY CLAY (ML-CL) - - - - -

B-01 0.20 Dark Brown Moist CLAY w/ Silt and Rootlets - - - - -
B-02 0.40 Fill - Crushed Limestone GRAVEL with a Brown to Black CLAY w/ Silt Matrix - - - - -
B-03 0.55 Dark Gray Moist Mottled CLAY w/ Silt and Fe Staining - - - - -
B-04 0.70 Brown Fine Grained Poorly Graded SAND (SP) w/ Trace Silt and Some Clay SP-SC 6.8 10.3 < 0.075 0.16 0.22 0.26 1.3 3.5
B-05 0.78 Interbedded SAND (SP) and CLAY (CL) CL 14.5 55.2 < 0.075 < 0.075 < 0.075 0.11 N/A N/A
B-06 0.87 Tan Fine Poorly Graded SAND (SP) w/ Silt and Gray Clay SC 8.2 22.8 < 0.075 0.10 0.16 0.19 0.7 2.5
B-07 0.98 Tan Fine Grained Poorly Graded SAND (SP) w/ Clay Interbeds SC 8.6 20.6 < 0.075 0.11 0.16 0.19 0.9 2.6
B-08 1.08 Brown Fine Grained Poorly Graded SAND (SP) w/ Gray Clay Interbeds SC 13.3 42.1 < 0.075 < 0.075 0.11 0.15 0.5 1.9
B-09 1.13 Interbedded Brown Fine Grained Poorly Graded SAND (SP) and Gray CLAY (CL) SC 14.6 46.8 < 0.075 < 0.075 0.09 0.14 0.5 1.9
B-10 1.29 Brown Fine Poorly Graded SAND (SP) and Gray CLAY (CL) SC 13.3 36.4 < 0.075 < 0.075 0.13 0.16 0.5 2.2
B-11 1.39 Brown Fine Grained Poorly Graded SAND (SP) w/ Gray Clay Interbeds SC 14.0 40.1 < 0.075 < 0.075 0.13 0.17 0.4 2.3
B-12 1.49 Brown Fine Poorly Graded SAND (SP) and Gray CLAY (CL) SC 13.3 34.3 < 0.075 < 0.075 0.16 0.19 0.4 2.6
B-13 1.60 Brown Fine to Medium Grained Poorly Graded SAND (SP) w/ Gray CLAY Interbeds SC 9.8 26.3 < 0.075 0.10 0.18 0.22 0.6 2.9
B-14 1.72 Brown Fine Grained Poorly Graded SAND (SP) w/ Gray Clay Interbeds SC 11.0 33.2 < 0.075 < 0.075 0.16 0.19 0.4 2.6
B-15 1.83 Brown Fine Grained Poorly Graded SAND (SP) w/ Trace Fines Intermixed Gray CLAY 13.6 Data recording error
B-16 1.57 Brown Fine Grained Poorly Graded SAND (SP) and Gray Clay w/ Some Silt SC 12.3 34.8 < 0.075 < 0.075 0.15 0.19 0.4 2.5
B-17 1.68 Brown Fine Grained Poorly Graded SAND (SP) w/ Gray CLAY layers and Trace Organics (Wood Particles) SC 11.3 25.7 < 0.075 0.10 0.17 0.21 0.7 2.8
B-18 1.79 Brown Fine Grained Poorly Graded SAND (SP) w/ Gray Clay Interbeds SC 10.8 33.1 < 0.075 < 0.075 0.15 0.19 0.4 2.5
B-19 1.90 Brown Gray CLAY w/ Brown Fine Grained Poorly Graded SAND (SP) Interbeds CL 16.0 53.7 < 0.075 < 0.075 < 0.075 0.13 N/A N/A
B-20 2.02 Interbedded Brown Fine Grained SAND (SP)  and Gray Lean CLAY (CL) w/ Silt SC 16.9 44.1 < 0.075 < 0.075 0.10 0.15 0.5 1.9
B-21 2.16 Tan Fine Grained Poorly Graded SAND (SC) w/ Gray CLAY lenses SC 6.0 23.9 < 0.075 0.09 0.14 0.15 0.7 2.0
B-22 2.29 Tan Fine Grained Poorly Graded SAND (SP) w/ Some Silt SP-SM 9.8 4.0 0.083 0.11 0.14 0.15 1.1 1.8
B-23 2.39 Tan Fine Grained Poorly Graded SAND (SP) SP 5.2 0.7 0.13 0.16 0.20 0.22 1.0 1.7
B-24 2.49 Tan Fine Grained Poorly Graded SAND (SP) SP 4.2 0.3 0.13 0.14 0.14 0.15 1.0 1.2
B-25 2.60 Tan Fine Grained Poorly Graded SAND (SP) SP 4.6 0.5 0.13 0.14 0.18 0.25 1.0 3.4
B-26 2.73 Tan Fine Grained Poorly Graded SAND(SP) w/ Fe Staining and Trace Fines SP 5.2 1.0 0.089 0.13 0.19 0.23 0.8 2.6
B-27 2.86 Tan Fine Grained Poorly Graded SAND (SP) SP 5.7 0.6 0.14 0.18 0.23 0.26 0.9 1.9
B-28 2.98 Tan Fine Grained Poorly Graded SAND (SP) w/ Trace Silt and Fe Staining SP 4.6 1.1 0.14 0.18 0.23 0.25 0.9 1.9
B-29 3.11 Tan Fine Grained Poorly Graded SAND (SP) w/ Trace Clay SP 4.5 1.8 0.14 0.19 0.25 0.27 1.0 2.0
B-30 3.23 Tan Fine Grained Poorly Graded SAND (SP) SP 4.4 0.9 0.14 0.20 0.27 0.29 1.0 2.2 Not Accurate mc - some s
B-31 3.34 Tan to Brown Fine to Medium Grained Poorly Graded SAND (SP) w/ Trace Silt SP 4.7 1.5 0.12 0.19 0.27 0.31 1.0 2.5
B-32 3.45 Tan Fine Grained Poorly Graded SAND (SP) SP 6.1 1.1 0.13 0.18 0.23 0.26 0.9 2.0
B-33 3.58 Tan Wet Fine to Medium Grained Poorly Graded SAND (SP) SP 7.3 0.8 0.14 0.20 0.27 0.30 1.0 2.1
B-34 3.72 Tan Fine to Medium Grained Poorly Graded SAND (SP) w/ Trace Fines SP 11.3 1.0 0.13 0.19 0.26 0.28 0.9 2.2
B-35 3.85 Tan Fine to Medium Grained Poorly Graded SAND (SP) SP 18.4 1.0 0.13 0.19 0.27 0.30 1.0 2.3
B-36 3.96 Tan Wet Medium to Fine Grained Poorly Graded SAND (SP) w/ Some Fine Gravel SP 20.2 0.6 0.16 0.25 0.31 0.35 1.2 2.1
B-37 4.06 Tan to Orange Wet Medium to Fine Grained Poorly Graded SAND (SP) some pebbles SP 20.3 0.5 0.16 0.23 0.29 0.32 1.0 1.9
B-38 4.15 Brown Wet Fine to Medium Grained Poorly Graded SAND (SP) SP 24.0 0.5 0.16 0.23 0.29 0.33 1.0 2.0
B-39 4.18 Tan to Orange Wet Medium to Fine Grained Poorly Graded SAND (SP) SP 18.9 0.9 0.16 0.23 0.29 0.32 1.0 2.0
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Boring: B(UW)-1 Sample: B-4 Description: Brown Fine Grained Poorly Graded SAND (SP) w/ Trace Silt and Some Clay

D10 < 0.075 mm Cc 1.3 Cu 3.5
D30 0.16 mm
D50 0.22 mm
D60 0.26 mm Coarse Fine Coarse Medium Fine

0 0 0 7.1 72.2 10.3

Performed by: JNH Checked by:

Gravel Sand
Fines
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Boring: B(UW)-1 Sample: B-5 Description: Interbedded SAND (SP) and CLAY (CL)

D10 < 0.075 mm Cc N/A Cu N/A
D30 < 0.075 mm
D50 < 0.075 mm
D60 0.11 mm Coarse Fine Coarse Medium Fine

0 0 0.1 2.4 42.4 55.2

Performed by: JNH Checked by:

Gravel Sand
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Boring: B(UW)-1 Sample: B-6 Description: Tan Fine Poorly Graded SAND (SP) w/ Silt and Gray Clay

D10 < 0.075 mm Cc 0.7 Cu 2.5
D30 0.10 mm
D50 0.16 mm
D60 0.19 mm Coarse Fine Coarse Medium Fine

0 0 0.1 3.4 73.6 22.8

Performed by: JNH Checked by:
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Boring: B(UW)-1 Sample: B-7 Description: Tan Fine Grained Poorly Graded SAND (SP) w/ Clay Interbeds

D10 < 0.075 mm Cc 0.9 Cu 2.6
D30 0.11 mm
D50 0.16 mm
D60 0.19 mm Coarse Fine Coarse Medium Fine

0 0 0.1 3.3 75.9 20.6

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-8 Description: Brown Fine Grained Poorly Graded SAND (SP) w/ Gray Clay Interbeds

D10 < 0.075 mm Cc 0.5 Cu 1.9
D30 < 0.075 mm
D50 0.11 mm
D60 0.15 mm Coarse Fine Coarse Medium Fine

0 0 0.4 2.2 55.2 42.1

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-9 Description: Interbedded Brown Fine Grained Poorly Graded SAND (SP) and Gray CLAY (CL)

D10 < 0.075 mm Cc 0.5 Cu 1.9
D30 < 0.075 mm
D50 0.092 mm
D60 0.14 mm Coarse Fine Coarse Medium Fine

0 0 0.1 2.7 50.4 46.8

Performed by: JNH Checked by:
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Fines

USCS Grain Size Percentages

0

10

20

30

40

50

60

70

80

90

100

0.010.1110

Pe
rc

en
t P

as
si

ng
 (%

) 

Grain Size (mm) 



Boring: B(UW)-1 Sample: B-10 Description: Brown Fine Poorly Graded SAND (SP) and Gray CLAY (CL)

D10 < 0.075 mm Cc 0.5 Cu 2.2
D30 < 0.075 mm
D50 0.13 mm
D60 0.16 mm Coarse Fine Coarse Medium Fine

0 0.3 0.2 3.1 60 36.4

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-11 Description: Brown Fine Grained Poorly Graded SAND (SP) w/ Gray Clay Interbeds

D10 < 0.075 mm Cc 0.4 Cu 2.3
D30 < 0.075 mm
D50 0.13 mm
D60 0.17 mm Coarse Fine Coarse Medium Fine

0 0 0.2 3.4 56.3 40.1

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-12 Description: Brown Fine Poorly Graded SAND (SP) and Gray CLAY (CL)

D10 < 0.075 mm Cc 0.4 Cu 2.6
D30 < 0.075 mm
D50 0.16 mm
D60 0.19 mm Coarse Fine Coarse Medium Fine

0 0.5 0.3 4.8 60.1 34.3

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-13 Description: Brown Fine to Medium Grained Poorly Graded SAND (SP) w/ Gray CLAY Interbeds

D10 < 0.075 mm Cc 0.6 Cu 2.9
D30 0.098 mm
D50 0.18 mm
D60 0.22 mm Coarse Fine Coarse Medium Fine

0 0.7 0.2 4.8 68.2 26.3

Performed by: JNH Checked by:
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Boring: B(UW)-1 Sample: B-14 Description: Brown Fine Grained Poorly Graded SAND (SP) w/ Gray Clay Interbeds

D10 < 0.075 mm Cc 0.4 Cu 2.6
D30 < 0.075 mm
D50 0.16 mm
D60 0.19 mm Coarse Fine Coarse Medium Fine

0 0 0.1 3.4 63.2 33.2

Performed by: JNH Checked by:

Gravel Sand
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USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-15 Description: Brown Fine Grained Poorly Graded SAND (SP) w/ Trace Fines Intermixed Gray CLAY

D10 < 0.075 mm Cc 0.4 Cu 2.3
D30 < 0.075 mm
D50 0.14 mm
D60 0.18 mm Coarse Fine Coarse Medium Fine

0 0 0.2 3.1 60.4 36.5

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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`

Boring: B(UW)-1 Sample: B-21 Description: Tan Fine Grained Poorly Graded SAND (SC) w/ Gray CLAY lenses

D10 < 0.075 mm Cc 0.7 Cu 2.0
D30 0.090 mm
D50 0.14 mm
D60 0.15 mm Coarse Fine Coarse Medium Fine

0 0 0 0.4 75.7 23.9

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-17 Description: Brown Fine Grained Poorly Graded SAND (SP) w/ Gray CLAY layers and Trace Organic

D10 < 0.075 mm Cc 0.7 Cu 2.8
D30 0.10 mm
D50 0.17 mm
D60 0.21 mm Coarse Fine Coarse Medium Fine

0 0 0.1 4.4 69.7 25.7

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-16 Description: Brown Fine Grained Poorly Graded SAND (SP) and Gray Clay w/ Some Silt

D10 < 0.075 mm Cc 0.4 Cu 2.5
D30 < 0.075 mm
D50 0.15 mm
D60 0.19 mm Coarse Fine Coarse Medium Fine

0 0.3 0.3 3.8 60.7 34.8

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-22 Description: Tan Fine Grained Poorly Graded SAND (SP) w/ Some Silt

D10 0.083 mm Cc 1.1 Cu 1.8
D30 0.114 mm
D50 0.14 mm
D60 0.15 mm Coarse Fine Coarse Medium Fine

0 0 0.1 0.4 95.5 4

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-18 Description: Brown Fine Grained Poorly Graded SAND (SP) w/ Gray Clay Interbeds

D10 < 0.075 mm Cc 0.4 Cu 2.5
D30 < 0.075 mm
D50 0.15 mm
D60 0.19 mm Coarse Fine Coarse Medium Fine

0 0 0.3 3.4 63.4 33.1

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-19 Description: Brown Gray CLAY w/ Brown Fine Grained Poorly Graded SAND (SP) Interbeds

D10 < 0.075 mm Cc N/A Cu N/A
D30 < 0.075 mm
D50 < 0.075 mm
D60 0.13 mm Coarse Fine Coarse Medium Fine

0 0.7 0.1 2.3 43.2 53.7

Performed by: JNH Checked by:
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Boring: B(UW)-1 Sample: B-23 Description: Tan Fine Grained Poorly Graded SAND (SP)

D10 0.13 mm Cc 1.0 Cu 1.7
D30 0.16 mm
D50 0.20 mm
D60 0.22 mm Coarse Fine Coarse Medium Fine

0 0 0.1 0.4 98.9 0.7

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-20 Description: Interbedded Brown Fine Grained SAND (SP)  and Gray Lean CLAY (CL) w/ Silt

D10 < 0.075 mm Cc 0.5 Cu 1.9
D30 < 0.075 mm
D50 0.10 mm
D60 0.15 mm Coarse Fine Coarse Medium Fine

0 0.2 0.3 3.4 52.1 44.1

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-24 Description: Tan Fine Grained Poorly Graded SAND (SP)

D10 0.13 mm Cc 1.0 Cu 1.2
D30 0.14 mm
D50 0.14 mm
D60 0.15 mm Coarse Fine Coarse Medium Fine

0 0 0 0.5 99.3 0.3

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-25 Description: Tan Fine Grained Poorly Graded SAND (SP)

D10 0.13 mm Cc 1.0 Cu 3.4
D30 0.14 mm
D50 0.18 mm
D60 0.25 mm Coarse Fine Coarse Medium Fine

0 0 0 0.9 98.5 0.5

Performed by: JNH Checked by:

Gravel Sand
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USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-27 Description: Tan Fine Grained Poorly Graded SAND (SP)

D10 0.14 mm Cc 0.9 Cu 1.9
D30 0.18 mm
D50 0.23 mm
D60 0.26 mm Coarse Fine Coarse Medium Fine

0 0 0.1 1.4 97.9 0.6

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-26 Description: Tan Fine Grained Poorly Graded SAND(SP) w/ Fe Staining and Trace Fines

D10 0.089 mm Cc 0.8 Cu 2.6
D30 0.13 mm
D50 0.19 mm
D60 0.23 mm Coarse Fine Coarse Medium Fine

0 0 0 0.7 98.3 1

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-33 Description: Tan Wet Fine to Medium Grained Poorly Graded SAND (SP)

D10 0.14 mm Cc 1.0 Cu 2.1
D30 0.20 mm
D50 0.27 mm
D60 0.30 mm Coarse Fine Coarse Medium Fine

0 0.4 0.3 7.4 91.2 0.8

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-28 Description: Tan Fine Grained Poorly Graded SAND (SP) w/ Trace Silt and Fe Staining

D10 0.14 mm Cc 0.9 Cu 1.9
D30 0.18 mm
D50 0.23 mm
D60 0.25 mm Coarse Fine Coarse Medium Fine

0 0 0.2 1.1 97.6 1.1

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-29 Description: Tan Fine Grained Poorly Graded SAND (SP) w/ Trace Clay

D10 0.14 mm Cc 1.0 Cu 2.0
D30 0.19 mm
D50 0.25 mm
D60 0.27 mm Coarse Fine Coarse Medium Fine

0 0 0.1 3.5 94.5 1.8

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-34 Description: Tan Fine to Medium Grained Poorly Graded SAND (SP) w/ Trace Fines

D10 0.13 mm Cc 0.9 Cu 2.2
D30 0.19 mm
D50 0.26 mm
D60 0.28 mm Coarse Fine Coarse Medium Fine

0 0 0.1 5.3 93.6 1

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-30 Description: Tan Fine Grained Poorly Graded SAND (SP)

D10 0.14 mm Cc 1.0 Cu 2.2
D30 0.20 mm
D50 0.27 mm
D60 0.29 mm Coarse Fine Coarse Medium Fine

0 0 0.1 6.2 92.9 0.9

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-32 Description: Tan Fine Grained Poorly Graded SAND (SP)

D10 0.13 mm Cc 0.9 Cu 2.0
D30 0.18 mm
D50 0.23 mm
D60 0.26 mm Coarse Fine Coarse Medium Fine

0 0 0.1 4.6 94.1 1.1

Performed by: JNH Checked by:

Gravel Sand
Fines

USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-31 Description: Tan to Brown Fine to Medium Grained Poorly Graded SAND (SP) w/ Trace Silt

D10 0.12 mm Cc 1.0 Cu 2.5
D30 0.19 mm
D50 0.27 mm
D60 0.31 mm Coarse Fine Coarse Medium Fine

0 0 0.1 10.9 87.4 1.5

Performed by: JNH Checked by:

Gravel Sand
Fines
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Boring: B(UW)-1 Sample: B-35 Description: Tan Fine to Medium Grained Poorly Graded SAND (SP) 

D10 0.13 mm Cc 1.0 Cu 2.3
D30 0.19 mm
D50 0.27 mm
D60 0.30 mm Coarse Fine Coarse Medium Fine

0 0 0.3 5.4 93.2 1

Performed by: JNH Checked by:

Gravel Sand
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USCS Grain Size Percentages
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Boring: B(UW)-1 Sample: B-36 Description: Tan Wet Medium to Fine Grained Poorly Graded SAND (SP) w/ Some Fine Gravel

D10 0.16 mm Cc 1.2 Cu 2.1
D30 0.25 mm
D50 0.31 mm
D60 0.35 mm Coarse Fine Coarse Medium Fine

0 8.5 1.6 9.1 80.2 0.6

Performed by: JNH Checked by:

Gravel Sand
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Boring: B(UW)-1 Sample: B-37 Description: Tan to Orange Wet Medium to Fine Grained Poorly Graded SAND (SP) some pebbles

D10 0.16 mm Cc 1.0 Cu 1.9
D30 0.23 mm
D50 0.29 mm
D60 0.32 mm Coarse Fine Coarse Medium Fine
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Boring: B(UW)-1 Sample: B-38 Description: Brown Wet Fine to Medium Grained Poorly Graded SAND (SP)

D10 0.16 mm Cc 1.0 Cu 2.0
D30 0.23 mm
D50 0.29 mm
D60 0.33 mm Coarse Fine Coarse Medium Fine

0 0.1 0.2 20.1 79 0.5

Performed by: JNH Checked by:
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Boring: B(UW)-1 Sample: B-39 Description: Tan to Orange Wet Medium to Fine Grained Poorly Graded SAND (SP)

D10 0.16 mm Cc 1.0 Cu 2.0
D30 0.23 mm
D50 0.29 mm
D60 0.32 mm Coarse Fine Coarse Medium Fine

0 0.1 0.8 14.9 83.3 0.9

Performed by: JNH Checked by:

Gravel Sand
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 Boring Log 
 Laboratory Test Summary Table 
 Atterberg Limits Results 
 Grain Size Analysis Curves 
 Oedometer Testing Results 

  



P
age 1 of 3

          LO
G

 O
F TEST B

O
R

IN
G

 G
eological E

ngineering P
rogram

Facility / P
roject N

am
e

D
ate (m

m
/dd/yy)

S
tarted

B
oring N

um
ber

B
H

-4
C

E
E

 476 Test S
ite

7/8/2010
B

oring D
rilled by: C

rew
 C

hief &
 Firm

D
ate (m

m
/dd/yy)

Finished
D

rilling M
ethod

H
.S

.A
 to 4.6 m

A
lex (D

riller) K
evin (H

elper); B
adger S

tate D
rilling

7/8/2010
R

otary W
ash to term

ination
Final S

tatic W
ater Level

S
urface E

levation
B

orehole D
iam

eter
1.4m

` 400 feet N
A

V
D

 1929
159 m

m
 H

S
A

 150 m
m

 R
W

S
tate

C
ounty

C
ivil Tow

n / C
ity / V

illage
D

rill R
ig

W
isconsin

D
ane

M
adison

D
 120

10.0

9.5
-1cm

 thick clay lense

18
8

S-9
35.6

12-13-14
9.0

D
ense light gray m

oist poorly graded SAN
D

 (SP)
SP

0.93
0.43 CC

5558 �'vy

S-8

S-7

Tube 7

Tube 8

Tube 9

45.7

45.7

38.1

27.9

34.3

S-1

N
/A

S-2

38.1

3361

S-3

S-4
S-5
S-6

27.9

0

7-11-16

10-17-25

7-4-4

W
O

H

2-4-4

2-2-2

7-5-14
1.5

2.0

2.5

Depth (m)

Graphic Log

4.0

4.5

5.0

5.5

6.0

6.5

7.0

SP-SM
18

7 2
SP

18

M
H

38
74

14.5
45⁰

75
85

46
16.5

123
161

11.8

O
H

458
483

182

N
P

217
O

H
187

212
SM

74
19

SM
74

32 23
SM

53
C

L
21

30
15

C
L

16
37

18

D
ense light gray m

oist poorly graded SAN
D

 w
ith

silt (SP-SM
)

Very dense light gray w
et poorly graded SAN

D
 

(SP)

-Setup R
otary W

ash D
rilling

Soft to Firm
 black m

oist O
R

G
A

N
IC

 SILT (O
H

)

Fines Content

Unit Weight

Firm
 dark brow

n m
oist m

ottled lean C
LAY (C

L)
w

ith som
e sand lenses

Well Diagram

su (kPa) / �'

water content

Liquid Limit

Plasticity Index

S
oil / R

ock D
escription

and G
eologic O

rigin for

7.5

8.0

8.5

3.0

3.5

E
ach M

ajor U
nit

USCS

S
am

ple

Number
and Type

Recovery 
(cm)

Blow Counts

0.5

1.0
-N

o R
ecovery

-Fine sand lense

Very loose to loose black w
et SILTY SAN

D
 (SM

)

Firm
 light gray m

oist elastic SILT (M
H

) w
ith

sand sized shell fragm
ents

Facility / Project N
am

e: G
LE 476 Test Site

P
age 2 of 3

Boring N
um

ber: BH-4

22.0

21.5
Blind D

rilling 21.3 m
 to 25.9 m

18
6

S-17
30.5

19-27-31
21.0

(SP) w
ith silt

SP-SM
Very dense tan to light gray poorly graded SAN

D

�'vy

CC / CS

S-16
27.9

13-19-22

S-15
20.32

18-20-16

Depth (m)

S-10
22.9

13-18-19

S-14
45

7-4-8

S-13
45

5-5-7

S-12
45

3-5-7

S-11
35.6

10-12-13

-becom
ing very dense

SP

18.0

4
19

D
ense tan to light gray poorly graded SAN

D
 (SP)

SP
19

C
L

C
L

20
25

9
98

C
L

22
24

8
82

H
ard light gray m

oist lean C
LAY (C

L)

H
ard gray w

et lean C
LAY (C

L) w
ith sand

C
L

20
35

18
54

D
ense light gray m

oist poorly graded SAN
D

 (SP)
SP

22

Unit Weight

Number
and Type

Recovery 
(cm)

S
oil / R

ock D
escription

and G
eologic O

rigin for
E

ach M
ajor U

nit

Well Diagram

su (kPa) / �'

water content

Liquid Limit

Plasticity Index

Fines Content

Sam
ple

Blow Counts

USCS

Graphic Log

18.5

19.0

19.5

20.0

20.5

13.0

13.5

10.5

11.0

11.5

12.0

12.5

14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5



Facility / Project N
am

e: G
LE 476 Test Site

P
age 3 of 3

Boring N
um

ber: BH-4

34.0

33.5
Filter Pack (O

hio #5) from
 28 m

 to 30.2 m
33.0

Fine sand (O
hio #40 -60) from

 27.7 m
 to 28 m

Bentonite seal from
 surface to 27.7 m

Annular Space:  Boring diam
eter 150 m

m
 

�'vy

CC / CS

31.0

31.5

32.0

32.5

29.0

29.5

0
9-9-19

30.0

30.5

27.0

27.5

28.0

28.5

25.0

25.5

S-18
25.4

18-22-26
26.0

26.5

22.5

23.0

23.5

24.0

24.5

Depth (m)

Unit Weight

Screen Slot Size: 0.25 m
m

W
ell Schedule 40 PVC

 Inner D
iam

eter 50m
m

W
ell D

etails:

Surface
Boring Term

inated at 30.5 m
 Below

 G
round

-N
o R

ecovery

Blind D
rilling 26.4 m

 to 30 m

7
D

ense tan to light gray poorly graded SAN
D

 (SP)
SP

18

Blind D
rilling 21.3 m

 to 25.9 m

Fines Content

Number
and Type

Recovery 
(cm)

S
oil / R

ock D
escription

and G
eologic O

rigin for
E

ach M
ajor U

nit

Well Diagram

su (kPa) / �'

water content

Liquid Limit

Plasticity Index

Sam
ple

Blow Counts

USCS

Graphic Log

ID

Top
Depth

(m)

Bottom
Depth

(m)

Approx.
�'v0

(kPa) Boring Desc.

Field
Log

USCS

Moisture
Content

(%)

Unit
Weight
(kN/m3)

D50

(mm)
D10

(mm) % Fines LL PI
Organic
Content

�'
(deg)

su

(kPa) CC CS

ea to �'v0

(%)
�'vy

(kPa)
S-1 0.46 0.91 12 Clay CH 16 37 18
S-2 1.37 1.52 25 Clay CH 21 30 15
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Tube8 3.35 3.96 51 Organic ML/OL 161 41
Tube8 3.35 3.96 51 Organic ML/OL 123 11.8 0.93 0.11 5.3 =s'v0
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Laboratory Test Summary, Site UW-1, Boring BH-4



Boring
Sam

ple
w

 (%
)

LL
PL

PI
LI

U
SCS

BH-4
S-1

16
37

19
18

-0.2
CL

BH-4
S-2

21
30

15
15

0.4
CL

BH-4
Tube7

217
483

301
182

-0.5
O

H
BH-4

Tube9
75

85
39

46
0.8

M
H

BH-4
S-11

20
35

17
18

0.2
CL

BH-4
S-12

22
24

16
8

0.7
CL

BH-4
S-13

20
25

16
9

0.4
CL

Atterberg Lim
its, Site U

W
-1, B

oring B
H

-4

0 10 20 30 40 50 60 70 80 90

0
10

20
30

40
50

60
70

80
90

100
110

Plasticity Index (PI %) 

Liquid Lim
it (LL %

) 

M
H or O

H 

M
L or O

L 

CL-M
L 

Sam
ple

Sam
ple

Sam
ple

Sam
ple

Sam
ple

Sam
ple

Sam
ple

Sam
ple

Sam
ple

S-3
S-4

S-5
S-7

S-8
S-9

S-16
S-17

S-18
D

iam
ter

Sieve
(m

m
)

%
 Pass

%
 Pass

%
 Pass

%
 Pass

%
 Pass

%
 Pass

%
 Pass

%
 Pass

%
 Pass

4
4.75

90.0
95.6

88.3
99.8

100.0
99.6

99.8
99.5

99.6
10

2
80.0

86.8
76.9

97.7
99.7

98.5
99.0

99.1
96.7

20
0.85

68.2
76.9

65.4
95.4

98.0
96.9

97.6
97.9

93.5
40

0.425
57.1

66.6
52.5

82.3
75.9

87.4
90.0

88.2
83.3

60
0.25

48.0
57.8

42.6
42.5

47.5
54.1

42.8
59

41.1
100

0.152
36.6

47.2
31.1

11.4
18.3

18.4
11.8

26.9
12.2

200
0.075

22.7
32.4

18.6
1.7

7.1
4.0

4.1
5.7

3.5

U
SC

S
SM

SM
SM

SP
SP-SM

SP
SP

SP-SM
SP

G
rain Size Analysis, Site U

W
-1, B

oring B
H

-4

0 10 20 30 40 50 60 70 80 90

100

0.01
0.1

1
10

Percentage Passing 

Particle Size (m
m

) 

1.5 m

2 m

2.4 m

6 m

7.5 m

9 m

19.5 m

21 m

26 m

BH-4 G
rain Size Analysis 



Depth:
3.7 m

Tube 8
Depth:

4.3 m
Tube 9

Soft black High Plasticity O
rganic (O

H)
Firm

 Gray elastic SILT (M
H)

e
0

3.72
e

0
2.24

�'vo  (kPa)
37.9

�
y ' (kP

a)
55

�'vo  (kPa)
40.1

�
y ' (kP

a)
58

m
c  (%

)
122.5

C
c

0.93
m

c  (%
)

73.9
C

c
0.43

�dry  (kN
/m

3)
5.3

C
s

0.11
�dry  (kN

/m
3)

8.3
C

s
0.06

Virgin Line c
v  (cm

2/s)
0.016

O
CR

1.5
Virgin Line c

v  (cm
2/s)

0.015
O

CR
1.4

Rebound c
v  (cm

2/s)
0.071

Rebound c
v  (cm

2/s)
0.094

LL
85

PL
39

PI
46

U
W

-1 O
edom

eter Tests

1

1.5 2

2.5 3

3.5 4

1
10

100
1000

Void Ratio, e 

Effective Vertical Stress, �'v  (kPa) 

3.7 m
4.3 m

Oedometer�Test�Results
Tube�8;�BH�4

Boring: BH�4 3.7�m CC 0.93
Sample: Tube�8

Description: Soft�to�firm�black�moist�ORGANIC�SILT�(OH) CS 0.11

OCR 1 Normally�Consolidated Pc' 55�kPa

s'v0 38 kPa

1.5

2

2.5

3

3.5

4

0 500 1000 1500 2000 2500 3000

Vo
id

 R
at

io
, e

Effective Vertical Stress, �'v (kPa)

1.5

2

2.5

3

3.5

4

1 10 100 1000

Vo
id

 R
at

io
, e

Effective Vertical Stress, �'v (kPa)



Step Load �y0 �y12 D Stress H0 �H �a e0 �e e cv Data

(kN) (mm) (mm) (mm) (kPa) (mm) (mm) cm2/s Rating
1 0.025 2.0883 2.0728 63.50 8 25.40 �0.015 �0.001 3.72 �0.003 3.724
2 0.135 3.0507 3.436 63.50 43 25.40 1.348 0.053 3.72 0.250 3.471
3 0.218 3.5783 4.1198 63.50 69 25.40 2.032 0.080 3.72 0.378 3.344 0.059263 Good
4 0.343 4.2653 4.8656 63.50 108 25.40 2.777 0.109 3.72 0.516 3.205 0.017597 Good
5 0.59 5.1503 6.0477 63.50 186 25.40 3.959 0.156 3.72 0.736 2.985 0.021252 Good
6 1.09 6.3479 7.3133 63.50 344 25.40 5.225 0.206 3.72 0.971 2.750 0.016418 Good
7 0.591 7.2901 7.3133 63.50 187 25.40 5.225 0.206 3.72 0.971 2.750 0.042789 Fair
8 0.342 7.1756 7.0828 63.50 108 25.40 4.995 0.197 3.72 0.928 2.793 0.028657 Fair
9 0.217 7.0519 6.9714 63.50 69 25.40 4.883 0.192 3.72 0.908 2.813 0.009817 Poor

10 0.156 6.9606 6.9157 63.50 49 25.40 4.827 0.190 3.72 0.897 2.824 0.055783 Poor
11 0.218 6.942 6.9513 63.50 69 25.40 4.863 0.191 3.72 0.904 2.817 Bad
12 0.344 6.976 7.0132 63.50 109 25.40 4.925 0.194 3.72 0.915 2.806 0.09914 Fair
13 0.593 7.055 7.1493 63.50 187 25.40 5.061 0.199 3.72 0.941 2.780 0.07218 Fair
14 1.091 7.2437 7.4851 63.50 344 25.40 5.397 0.212 3.72 1.003 2.718 0.015425 Fair
15 2.088 7.7852 8.8126 63.50 659 25.40 6.724 0.265 3.72 1.250 2.471 0.016343 Good
16 4.084 9.2304 10.25 63.50 1290 25.40 8.162 0.321 3.72 1.517 2.204 0.012356 Good
17 8.074 10.4248 11.8344 63.50 2549 25.40 9.746 0.384 3.72 1.812 1.910 0.011709 Good
18 4.087 11.8235 11.6379 63.50 1291 25.40 9.550 0.376 3.72 1.775 1.946
19 2.09 11.5946 11.4986 63.50 660 25.40 9.410 0.370 3.72 1.749 1.972 Virgin� Recomp.
20 1.091 11.463 11.3888 63.50 344 25.40 9.301 0.366 3.72 1.729 1.992 cv cv

21 0.545 11.3439 11.2047 63.50 172 25.40 9.116 0.359 3.72 1.694 2.027 cm2/s cm2/s
22 0.341 11.1969 11.084 63.50 108 25.40 8.996 0.354 3.72 1.672 2.049 0.015946 0.07137
23 0.219 11.0669 10.9463 63.50 69 25.40 8.858 0.349 3.72 1.646 2.075
24 0.158 10.9478 10.8426 63.50 50 25.40 8.754 0.345 3.72 1.627 2.094
25 0.001 10.8859 9.6342 63.50 0.3 25.40 7.546 0.297 3.72 1.403 2.319 av �0.00724

mv 0.001533
D 652.142
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Boring: BH-4 CC 0.43
Sample: Tube 9

Description: Firm light gray moist elastic SILT (MH) with sand sized shell fragments CS 0.06

OCR 1 Normally Consolidated Pc' 58 kPa
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Step Load �y0 �y12 D Stress H0 �H �a e0 �e e cv Curve

(kN) (mm) (mm) (mm) (kPa) (mm) (mm) cm2/s Fitting
1 0.011 0.1272 0.1469 63.50 3 25.40 0.020 0.001 2.24 0.003 2.239
2 0.153 0.1378 1.9562 63.50 48 25.40 1.829 0.072 2.24 0.233 2.008 0.011273 Good
3 0.218 1.9821 2.4154 63.50 69 25.40 2.288 0.090 2.24 0.292 1.949 0.002755 Fair
4 0.342 2.4382 3.0585 63.50 108 25.40 2.931 0.115 2.24 0.374 1.867 0.005612 Good
5 0.592 3.1117 3.875 63.50 187 25.40 3.748 0.148 2.24 0.478 1.763 0.012749 Good
6 1.091 3.9328 4.7295 63.50 344 25.40 4.602 0.181 2.24 0.587 1.654 0.014968 Good
7 0.592 4.699 4.7295 63.50 187 25.40 4.602 0.181 2.24 0.587 1.654 0.919946 Poor
8 0.342 4.62 4.5592 63.50 108 25.40 4.432 0.174 2.24 0.566 1.676 0.075185 Fair
9 0.218 4.5455 4.4923 63.50 69 25.40 4.365 0.172 2.24 0.557 1.684 0.103819 Fair

10 0.155 4.4755 4.4238 63.50 49 25.40 4.297 0.169 2.24 0.548 1.693 0.417867 Poor
11 0.217 4.4238 4.4238 63.50 69 25.40 4.297 0.169 2.24 0.548 1.693 Bad
12 0.343 4.4588 4.4938 63.50 108 25.40 4.367 0.172 2.24 0.557 1.684 Bad
13 0.592 4.5455 4.6124 63.50 187 25.40 4.485 0.177 2.24 0.572 1.669 0.03092 Poor
14 1.09 4.6717 4.8176 63.50 344 25.40 4.690 0.185 2.24 0.599 1.643 0.102411 Fair
15 2.089 4.921 5.7056 63.50 660 25.40 5.578 0.220 2.24 0.712 1.530 0.01786 Good
16 4.084 5.8196 6.7197 63.50 1290 25.40 6.593 0.260 2.24 0.841 1.400 0.021843 Good
17 8.074 6.8428 7.7703 63.50 2549 25.40 7.643 0.301 2.24 0.975 1.266 0.012487 Good
18 4.086 7.7308 7.5665 63.50 1290 25.40 7.439 0.293 2.24 0.949 1.292
19 2.088 7.5392 7.3795 63.50 659 25.40 7.252 0.286 2.24 0.925 1.316
20 1.09 7.3826 7.3263 63.50 344 25.40 7.199 0.283 2.24 0.919 1.323
21 0.592 7.2716 7.2093 63.50 187 25.40 7.082 0.279 2.24 0.904 1.338
22 0.344 7.1864 7.1089 63.50 109 25.40 6.982 0.275 2.24 0.891 1.350
23 0.218 7.0755 7.0025 63.50 69 25.40 6.875 0.271 2.24 0.877 1.364
24 0.157 6.9949 6.9371 63.50 50 25.40 6.810 0.268 2.24 0.869 1.372
25 -0.001 6.8003 5.926 63.50 -0.3 25.40 5.799 0.228 2.24 0.740 1.501

Virgin Recomp.
cv cv

cm2/s cm2/s
0.015197 0.093805

Averaged
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50 kPa Load Increment - Taylor and Casagrande Methods
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69 kPa Load Increment - Taylor Method
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110 kPa Load Increment - Taylor Method
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190 kPa Load Increment - Taylor and Casagrande Method
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350 kPa Load Increment - Taylor and Casagrande
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190 kPa Unload Step - Taylor Method
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1310 kPa Load Step - Taylor and Casagrande Methods
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2590 kPa Load Step - Taylor and Casagrande Methods
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 Boring Log 
 Laboratory Test Summary Table 
 Atterberg Limits Results 
 Grain Size Analysis Curves 
 Oedometer Testing Results 
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(kPa) Boring�Desc. USCS

Moisture
Content

(%)

Unit
Weight
(kN/m3)

D50

(mm)
D10

(mm) %�Sand %�Fines %�Silt %�Clay LL PI CC CS

�a�to��'v0

(%)
�'vy

(kPa)
AU�1 1 19.0 Tan�SAND SP 11 0.27 0.092 98.3 1.6 � �
AU�2 1.5 35.0 Rd/Br�Sa.�CLAY CL 23.8
AU�3 2.4 46.0 Grey�CLAY CL 34.6 30 15
T�1 2.1 44.4 Fine�SAND SP 36.2 0.11 0.08 97.3 2.7
T�1 2.2 44.9 Grey�CLAY CL 38.8 13.76 0.041 0.0047 29.8 70.3 59.9 10.4 37 19 0.19 0.02 4.6 130
T�1 2.3 45.5 Grey�CLAY CL 23 39 21
T�3 3.15 50.0 Grey�CLAY CL 40 23
T�4 3.4 51.4 Grey�CLAY CL 35.1 13.33 0.018 <�0.0013 10.4 89.6 65.8 23.8 0.22 0.01 1.3 43
T�4 3.45 51.6 Grey�CLAY CL 33.3 39 21



Boring Sample Depth USCS PL LL PI
B(UW)�1 AU�3 1 CL 16 30 15
B(UW)�1 T�1 2 CL 19 37 19
B(UW)�1 T�1 2.3 CL 18 39 21
B(UW)�1 T�3 3.15 CL 17 40 23
B(UW)�1 T�4 3.45 CL 18 39 21
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Boring: B(UW)-1 Sample: 2.2 m Description: Dark Gray Firm Moist Lean CLAY (CL) with Fine Sand and Silt Trace Rootlets

D10 0.0047 mm Cc 7.0 Cu 39.5
D30 0.023 mm
D50 0.041 mm Fines 70.3
D60 0.055 mm Coarse Fine Coarse Medium Fine Silt Clay

0 0 0 0.2 29.6 59.9 10.4

Performed�by: JNH Checked�by:
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Boring: B(UW)-1 Sample: 3.42 m Description: Dark Gray Soft Moist Lean CLAY (CL) with Fine Sand and Silt Laminations

D10 < 0.0013 mm Cc 1.6 Cu 20.7
D30 0.0075 mm
D50 0.018 mm Fines 89.6
D60 0.027 mm Coarse Fine Coarse Medium Fine Silt Clay

0 0 0 2.3 8.2 65.8 23.8

Performed�by: JNH Checked�by:

Gravel Sand
USCS Grain Size Percentages
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Site: DOT-7 Middleton Airport Road
Boring: B(UW)-1
Depth: 2.2 m Description: Soft�Dark�Gray�Moist�Clay�(CL)�with�silt�and�fine�sand

LL: 37 PL: 19 PI: 18
�y' 130 kPa

mc 38.8 % %�Sand 29.8
Cc 0.188 �dry 13.76 kN/m3

%�Silt 59.9
�vo' 33 kPa %�Clay 10.4

Cs 0.0163 eo 0.889
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Step Pressure
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Ho

(m)
H100

(m)
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(m)
�H
(m) �a e0 e100 ef

Taylor 
cv

(cm2/sec)

Casagrande 
cv

(cm2/sec)

Quality 
on cv 

determin
ation

1 55 0.025385 0.025476 0.02548 -9.1E-05 -0.35986606 0.889 0.896 0.896 - -
2 5 0.025385 0.025393 0.02539 -8.3E-06 -0.03271617 0.889 0.890 0.890
3 15 0.025385 0.025349 0.02535 3.58E-05 0.140925744 0.889 0.886 0.886
4 30 0.025385 0.025207 0.02521 0.000178 0.699598188 0.889 0.876 0.876
5 62 0.025385 0.025124 0.02512 0.000261 1.029261375 0.889 0.870 0.870
6 125 0.025385 0.025069 0.02492 0.000469 1.847134134 0.889 0.866 0.854 7.33E-02 1.04E+00 Poor
7 250 0.025385 0.024536 0.02422 0.001163 4.582588143 0.889 0.826 0.802 1.06E-01 9.24E-02 Good
8 500 0.025385 0.023657 0.02356 0.001827 7.197238527 0.889 0.760 0.753 5.57E-02 3.13E-02 Good
9 1000 0.025385 0.022998 0.02288 0.002509 9.882339965 0.889 0.711 0.702 3.37E-02 1.77E-02 Good

10 350 0.025385 0.023098 0.02310 0.00229 9.019184558 0.889 0.719 0.719 1.21E+00 6.99E-01 Poor
11 125 0.025385 0.023163 0.02323 0.002156 8.493236163 0.889 0.724 0.729 3.04E-01 6.20E-01 Poor
12 350 0.025385 0.023143 0.02314 0.002245 8.843029348 0.889 0.722 0.722 3.03E-03 9.62E-02 Poor
13 1000 0.025385 0.022991 0.02296 0.002428 9.565262951 0.889 0.711 0.708 4.67E-03 5.66E-02 Fair
14 2000 0.025385 0.022474 0.02231 0.003078 12.12704353 0.889 0.672 0.660 2.22E-02 2.41E-02 Good
15 2900 0.025385 0.021857 0.02180 0.003586 14.12512507 0.889 0.626 0.622 2.96E-03 2.39E-03 Fair
16 2000 0.025385 0.021834 0.02183 0.003551 13.9892338 0.889 0.625 0.625
17 1000 0.025385 0.021994 0.02199 0.003391 13.35759701 0.889 0.637 0.637
18 365 0.025385 0.022345 0.02234 0.00304 11.97604885 0.889 0.663 0.663
19 250 0.555972 0.022429 0.02243 0.533544 95.96588407 0.889 0.669 0.669
20 125 0.556377 0.022619 0.02262 0.533758 95.93460618 0.889 0.683 0.683
21 62 0.557188 0.022583 0.02258 0.534604 95.94693761 0.889 0.680 0.680
22 30 0.558819 0.022729 0.02273 0.53609 95.9325959 0.889 0.691 0.691
23 15 0.562083 0.022732 0.02273 0.539351 95.95575964 0.889 0.692 0.692
24 7.5 0.5686 0.022882 0.02288 0.545717 95.97570513 0.889 0.703 0.703

Virgin�Line Rebound
cv�(cm2/s) cv�(cm2/s)

0.048 0.757



Taylor�Construction Casagrande�Construction
Initial x y 100%�Consolidation

0 0.00006 Offset 90% 0 0.00014 Secondary�Trend Primary�Trend time 85 seconds
6 0.0002 0 0.00006 4 0.00014 1 0.000075 1 0.000027 DH 0.000118 meters

6.9 0.0002 4 0.0002 100000 0.000185 5500 0.0002 Height 0.02302
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�H100 0.000149 0 difference 0.00001 19 0.00009
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Taylor�Construction Casagrande�Construction

0 0.00006 0 0.00006 Secondary�Trend Primary�Trend 100%�Consolidation
3 0.001 3.45 0.001 10 0.00042 1 0.000054 time 960 seconds

100000 0.0007 10000 0.00073 DH 0.000565 meters
x y �H90�(m) 0.023832 Height 0.02366

90% 0 0.00039 t90�(sec) 86.4 e 0.760
1.2 0.00039 y x �H0 3 0.00013
1.2 0.001 �H100 0.000427 0 7 0.00020 36 0

difference 0.00007 36 0.00031
H100�(m) 0.023795 �Ho 0.00006 0.1 0.00031
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Site: DOT-7 Middleton Airport Road
Boring: B(UW)-1
Depth: 3.4 m Description: Soft�Dark�Gray�Moist�Clay�(CL)�with�silt�and�some�fine�sand�/�Laminations

LL: 39 PL: 18 PI: 21
�y' 37 kPa

mc 35.1 % %�Sand 10.5
Cc 0.225 �dry 13.33 kN/m3

%�Silt 65.8
�vo' 43 kPa %�Clay 23.8

Cs 0.0147 eo 0.950
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Step Pressure
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Hf

(m)
�H
(m) �a e0 e100 ef

Taylor 
cv

(cm2/sec)

Casagrande 
cv

(cm2/sec)

Quality 
of cv

1 5 0.02538 0.02533 4.57E-05 0.180141844 0.950 0.947 0.947 - -
2 12 0.02538 0.025213 0.02505 0.000333 1.311032309 0.950 0.937 0.924 3.23E+01 - Fair
3 15 0.02538 0.024588 0.02446 0.000925 3.6428684 0.950 0.889 0.879 2.18E+06 1.08E+06 Good
4 30 0.02538 0.02399 0.02387 0.001506 5.934672971 0.950 0.843 0.834 3.12E+04 1.12E+04 Good
5 62.7 0.02538 0.023189 0.02295 0.002428 9.567533491 0.950 0.782 0.763 1.09E-03 1.03E-03 Good
6 125.4 0.02538 0.022152 0.02199 0.003386 13.34050433 0.950 0.702 0.690 1.35E-03 8.48E-04 Good
7 250.8 0.02538 0.021294 0.02110 0.004285 16.88329393 0.950 0.636 0.621 1.53E-03 1.36E-03 Good
8 501.5 0.02538 0.020368 0.02017 0.005215 20.54617809 0.950 0.565 0.549 2.10E-03 1.62E-03 Good
9 1003 0.02538 0.01953 0.01936 0.006017 23.70866824 0.950 0.501 0.488 5.50E-03 1.76E-03 Good

10 353 0.02538 0.019427 0.01943 0.005949 23.43845548 0.950 0.493 0.493 8.96E-03 8.84E-03 Good
11 125 0.02538 0.019502 0.01954 0.005842 23.01812451 0.950 0.498 0.501 7.26E-03 8.12E-03 Good
12 353 0.02538 0.019465 0.01945 0.005926 23.34838455 0.950 0.496 0.495 1.15E-02 1.17E-02 Good
13 1003 0.02538 0.019343 0.01928 0.006096 24.01891253 0.950 0.486 0.482 1.15E-02 1.23E-02 Good
14 1082.8 0.02538 0.019279 0.01917 0.006205 24.44925138 0.950 0.481 0.473 1.62E-02 2.03E-02 Poor
15 501.5 0.02538 0.019216 0.01922 0.006159 24.26910954 0.950 0.476 0.477 1.89E-02 1.14E-02 Fair
16 216.6 0.02538 0.019294 0.01930 0.006078 23.94885737 0.950 0.482 0.483 8.97E-03 1.02E-02 Good
17 79.7 0.02538 0.019409 0.01943 0.005949 23.43845548 0.950 0.491 0.493 4.60E-03 4.62E-03 Fair
18 12 0.02538 0.019711 0.01993 0.005451 21.47691095 0.950 0.514 0.531 1.01E-03 3.25E-03 Fair

Virgin�Line Rebound
avg.�cv�(cm2/s) avg.�cv�(cm2/s)

1.82E�03 9.81E�03



Taylor�Construction �H90�(m) 0.019469 Casagrande�Construction
Initial t90�(sec) 69.984 16 0

0 0.000027 y x Secondary�Trend 16 0.00005
1.6 0.0001 �H100 7.367E�05 0 1 0.000062 0.001 0.00005

100000 0.000092
H100�(m) 0.0194643 �H0 15 0.00005

Offset Primary�Trend 60 0.00007
0 0.000027 cv�(m
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Ho 0.01950

x y 100%�Consolidation �H50 0.00005
90% 0 0.000069 time 83 seconds t50�(sec) 16
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Taylor�Construction Casagrande�Construction
Initial �H90�(m) 0.01949832 23 0

0 �1.8E�05 t90�(sec) 110.976 Secondary�Trend 23 �0.00004
2 �0.0001 y x 1 �3.9E�05 0.1 �0.00004

�H100 �7.244E�05 0 9000 �9.8E�05
�H0 15 �0.00004

Offset H100�(m) 0.01950376 Primary�Trend 60 �0.00006
0 �1.8E�05 5 �0.00002 difference �0.00002

2.3 �0.0001 cv�(m
2/s) 7.26E�07 900 �0.0001 �Ho �0.00002

cv�(cm2/s) 7.26E�03 Ho 0.01945
x y 100%�Consolidation �H50 �0.00004

90% 0 �6.7E�05 time 140 seconds t50�(sec) 23
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Taylor�Construction �H90�(m) 0.01942374 Casagrande�Construction
Initial t90�(sec) 89.304 21 0

0 �0.00003 y x Secondary�Trend 21 �0.00005
2.4 �0.0001 �H100 �6.444E�05 0 1 �5.7E�05 0.1 �0.00005

10000 �0.00007
H100�(m) 0.01942718 �H0 15 �0.00005

Offset Primary�Trend 60 �0.00006
0 �0.00003 cv�(m

2/s) 8.96E�07 1 �1.8E�05 difference �0.00001

2.76 �0.0001 cv�(cm2/s) 8.96E�03 200 �0.00007 �Ho �0.00003
Ho 0.01940

x y 100%�Consolidation �H50 �0.00005
90% 0 �6.1E�05 time 102 seconds t50�(sec) 21
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Boring Sample Depth USCS PL LL PI
B(UW)�1 Tube�2 2.29 CL 12 25 13
B(UW)�1 Tube�1 1.9 CL 13 28 15
Fall�Cone Tube�1 1.9 CL 17 32 15

*T�Line�from�Boulton�and�Paul�(1976)
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Boring: B(UW)-1 Sample: 2.3 m Description: Reddish Tan to Gray Very Stiff Slightly Moist Lean CLAY (CL) with Silt tr. F. Sand

D10 < 0.0013 mm Cc 0.4 Cu 27.6
D30 0.0044 mm
D50 0.019 mm Fines 76
D60 0.036 mm Coarse Fine Coarse Medium Fine Silt Clay

0 0 1.9 2.8 19.2 44.6 31.4
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2.3 m

Step Pressure
(kPa)

Ho

(m)
H100

(m)
Hf

(m)
DH
(m) ea e0 e100 ef

Taylor 
cv

(cm2/sec)

Casagrande 
cv

(cm2/sec)
Quality

1 25 0.02672 0.02691957 -0.00020 -0.7 0.507 -1.00E+00 0.518
2 25 0.02694 0.026938 0.02693757 0.00000 0.0 0.507 0.519 0.519
3 60 0.02694 0.0268 0.02688278 0.00005 0.2 0.507 0.512 0.516
4 125 0.02694 0.026849 0.02662364 0.00031 1.2 0.507 0.514 0.502 0.1898 0.0050 Poor
5 250 0.02694 0.026424 0.02612479 0.00081 3.0 0.507 0.490 0.473 0.0000 0.0049 Poor
6 500 0.02694 0.02581 0.02571079 0.00123 4.6 0.507 0.456 0.450 0.0047 0.0027 Good
7 1000 0.02694 0.025195 0.02496423 0.00197 7.3 0.507 0.421 0.408 0.0539 0.0109 Fair
8 2000 0.02694 0.024221 0.02418012 0.00276 10.2 0.507 0.366 0.364 0.0000 0.0236 Good
9 4000 0.02694 0.023246 0.02309937 0.00384 14.2 0.507 0.311 0.303 0.0059 0.0101 Good
10 1000 0.02694 0.02335 0.02338005 0.00356 13.2 0.507 0.317 0.319
11 250 0.02694 0.023744 0.02375528 0.00318 11.8 0.507 0.339 0.340 8.24E-03 0.013114362 Fair
12 1 0.02694 0.02575 0.02818728 -0.00125 -4.6 0.507 0.452 0.590 1.83E-03 Bad
13 250 0.02694 0.023952 0.02387478 0.00306 11.4 0.507 0.351 0.347 3.60E-03 0.00332001 Poor
14 1000 0.02694 0.023083 0.02309055 0.00385 14.3 0.507 0.302 0.302 6.15E-06 0.006846673 Good
15 4000 0.02694 0.021999 0.02186045 0.00508 18.8 0.507 0.241 0.233 2.32E-05 0.015743017 Good
16 8000 0.02694 0.020843 0.02074574 0.00619 23.0 0.507 0.176 0.170 2.83E-05 0.012205062 Good
17 12000 0.02694 0.020017 0.02002824 0.00691 25.6 0.507 0.129 0.130 5.26E-06 0.00089663 Fair
18 8000 0.02694 0.02033 0.02033474 0.00660 24.5 0.507 0.147 0.147
19 4000 0.02694 0.02065 0.02066474 0.00627 23.3 0.507 0.165 0.165
20 1000 0.02694 0.02108 0.02121924 0.00572 21.2 0.507 0.189 0.197
21 250 0.02694 0.02141 0.02172174 0.00522 19.4 0.507 0.208 0.225
22 1 0.02694 0.0277 0.02846224 -0.00152 -5.7 0.507 0.562 0.605

Virgin�Line Rebound
Avg.�cv�(cm2/s) Avg.�cv�(cm2/s)

1.92E�05 3.60E�03



Site: DOT-10c STH-23 & STH-32 Sheboygan Falls, WI
Boring: B(UW)-1
Depth: 1.9 Description:

LL: 28 PL: 13 PI: 15
�y' 2150 kPa

mc 18.1 % %�Sand
Cc 0.381 �dry 17.25 kN/m3 %�Silt

�vo' 32 kPa %�Clay
Cs 0.0581 eo 0.507
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cv t100�(sec) 165
0 0.27 0 0.27 0 0.243 2.32E�05 Time�(sec) e Time�(sec) e e100 0.2405 cv

25 0.19 28.75 0.19 10 0.243 cm2/sec 0.5 0.25 1 0.27 eo 0.273 0.0157
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cv t100�(sec) 870
0 0.41 0 0.41 0 0.388 3.60E�03 Time�(sec) e Time�(sec) e e100 0.351 cv

17 0.25 19.55 0.25 2.75 0.388 cm2/sec 0.1 0.36 3 0.4 eo 0.399 0.0033
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cv t100�(sec) 1100
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Appendix 5 

 

CPT calibration and pre-post test zero readings 





Site Sounding Date Operator Baseline TIP FRICTION u2

TIP
(MPa)

FRICTION
(kPa)

u2

(kPa) TIP FRICTION u2

Initial 0.00648 -0.32189 -0.12335 0.363 -121.303 -207.439
Final 0.0058 -0.30919 -0.12217 0.325 -116.517 -205.454
Initial 0.00675 -0.32148 -0.12486 0.378 -121.149 -209.978
Final 0.00675 -0.31127 -0.12004 0.378 -117.301 -201.872
Initial 0.00695 -0.32118 -0.12473 0.389 -121.036 -209.759
Final 0.00533 -0.30775 -0.11608 0.299 -115.975 -195.213
Initial 0.00906 -0.31375 -0.12556 0.508 -118.236 -211.155
Final 0.00952 -0.30971 -0.1219 0.533 -116.713 -205.000
Initial 0.00843 -0.29433 -0.12527 0.472 -110.917 -210.667
Final 0.00937 -0.31258 -0.12696 0.525 -117.795 -213.510
Initial 0.00857 -0.31136 -0.12433 0.480 -117.335 -209.087
Final 0.00716 -0.30535 -0.12018 0.401 -115.070 -202.108
Initial 0.0092 -0.30856 -0.12538 0.515 -116.280 -210.852
Final 0.00915 -0.30521 -0.12408 0.513 -115.017 -208.666
Initial 0.009 -0.30425 -0.12466 0.504 -114.656 -209.642
Final 0.00866 -0.30596 -0.12444 0.485 -115.300 -209.272
Initial 0.00923 -0.3083 -0.12451 0.517 -116.182 -209.389
Final 0.00885 -0.30317 -0.12428 0.496 -114.249 -209.003
Initial 0.00908 -0.30465 -0.1247 0.509 -114.806 -209.709
Final 0.00822 -0.29933 -0.12429 0.461 -112.801 -209.019
Initial 0.00906 -0.29796 -0.12405 0.508 -112.285 -208.616
Final 0.00916 -0.29946 -0.12363 0.513 -112.850 -207.909
Initial 0.0089 -0.29709 -0.12337 0.499 -111.957 -207.472
Final 0.0091 -0.29751 -0.12246 0.510 -112.116 -205.942
Initial 0.00984 -0.29329 -0.12441 0.551 -110.525 -209.221
Final 0.00937 -0.29814 -0.12707 0.525 -112.353 -213.695
Initial 0.00925 -0.30045 -0.12612 0.518 -113.224 -212.097
Final 0.00888 -0.29657 -0.12386 0.498 -111.761 -208.296
Initial 0.01239 -0.29614 -0.12456 0.694 -111.599 -209.473
Final 0.01233 -0.30096 -0.12666 0.691 -113.416 -213.005
Initial 0.01251 -0.29891 -0.12442 0.701 -112.643 -209.238
Final 0.01167 -0.29966 -0.12614 0.654 -112.926 -212.131
Initial 0.01228 -0.30023 -0.12458 0.688 -113.141 -209.507
Final 0.01151 -0.30335 -0.12791 0.645 -114.316 -215.107
Initial 0.01341 -0.29747 -0.13083 0.751 -112.101 -220.018
Final 0.01217 -0.30481 -0.12608 0.682 -114.867 -212.030
Initial 0.01313 -0.30042 -0.12443 0.736 -113.212 -209.255
Final 0.51357 0.19468 -0.10778 28.773 73.364 -181.254
Initial 0.01287 -0.29885 -0.12364 0.721 -112.621 -207.926
Final 0.01272 -0.29899 -0.12639 0.713 -112.673 -212.551

3.85 -0.56 0.18

0.54 1.09 1.04

10-007 CPTU2-02 10/18/2010
Finn H. & James 

S.
4.08

4.89 -1.64 -2.1210-007 CPTU2-01 10/18/2010
Finn H. & James 

S.

Finn H. & Skyler 
N.

Finn H. & Skyler 
N.

Finn H. & Skyler 
N.

936.45

10-009

10-009

10-009 SCPTU2-02a

SCPTU2-02

SCPTU2-01A 11/6/2010

11/6/2010

11/6/2010 1.17 -0.05 -2.20

9.70 -2.44 3.70

-190.03 14.34

4.20 1.68 0.18

0.331.769.94

-1.10 -0.50 0.34

0.74-0.14-2.22

0.49 -1.61 -1.67

1.30 1.81

10-006 CPTU2-03 10/16/2010
Finn H. & James 

S.

10-006 CPTU2-03a 10/16/2010 Finn H. & James 
S.

CPTU2-0110-006 10/14/2010 James S.

10-006 CPTU2-02 10/15/2010 James S.

7/21/2010 James S.

10-004 SCPTU2-04 10/10/2010 Finn H.

10-005 SCPTU2-05 10/13/2010 Finn H.

Output Units

10-008 SCPTU2-01 10/28/2010 Finn H.

10-002 SCPTU2-01 7/20/2010 James S.

10-002 SCPTU2-02 7/21/2010 James S.

10-002 CPTU2-03

10/5/2010 Finn H.10-003 CPTU2-03

10-008

10-008 SCPTU2-02a 10/29/2010
Finn H. & James 

S.

6.95 -0.25 -1.37SCPTU2-02 10/29/2010
James S. & Finn 

H.

6.47 -1.03 -2.64

Percent Shift

11.07 4.02 0.96

0.00 3.23 3.94

26.38 4.27 7.18

17.93 1.95 3.39

10-002 CPTU2-04 7/25/2010 James S.

10-002 CPTU1-05 7/25/2010 Finn H.

-4.95 1.30 2.96

-10.56 -6.01 -1.34

* CPTU performed using Purdue equiment where baselines were not obtained



Site Sounding Date Operator Baseline TIP FRICTION u2

TIP
(MPa)

FRICTION
(kPa)

u2

(kPa) TIP FRICTION u2

Output Units Percent Shift

Initial 0.01371 -0.29926 -0.12575 0.768 -112.775 -211.475
Final 0.01145 -0.29732 -0.1275 0.641 -112.044 -214.418
Initial 0.0135 -0.29708 -0.12447 0.756 -111.954 -209.322
Final 0.01294 -0.5979 -0.12362 0.725 -225.317 -207.893
Initial 0.01313 -0.58338 -0.13367 0.736 -219.845 -224.794
Final 0.01369 -0.58804 -0.12565 0.767 -221.601 -211.307
Initial 0.01369 -0.58162 -0.12554 0.767 -219.181 -211.122
Final 0.01328 -0.58488 -0.12647 0.744 -220.410 -212.686
Initial 0.01347 -0.58007 -0.1295 0.755 -218.597 -217.781
Final 0.01244 -0.58819 -0.12685 0.697 -221.657 -213.325
Initial 0.01327 -0.58573 -0.12558 0.743 -220.730 -211.189
Final 0.01248 -0.58852 -0.12497 0.699 -221.782 -210.163
Initial 0.01203 -0.58296 -0.13092 0.674 -219.686 -220.169
Final 0.01219 -0.57998 -0.12641 0.683 -218.563 -212.585
Initial 0.01234 -0.57322 -0.13677 0.691 -216.016 -230.007
Final 0.01163 -0.52393 -0.12313 0.652 -197.441 -207.069
Initial 0.01205 -0.51521 -0.1287 0.675 -194.155 -216.436
Final - - - - - -
Initial 0.01177 -0.51357 -0.12259 0.659 -193.537 -206.161
Final 0.01209 -0.52515 -0.12632 0.677 -197.901 -212.433
Initial 0.01166 -0.52103 -0.1252 0.653 -196.348 -210.550
Final 0.01123 -0.52831 -0.12764 0.629 -199.092 -214.653
Initial 0.012 -0.5193 -0.13153 0.672 -195.696 -221.195
Final 0.01115 -0.51914 -0.1275 0.625 -195.636 -214.418
Initial 0.01484 -0.5183 -0.12493 0.831 -195.320 -210.096
Final 0.01523 -0.51145 -0.12126 0.853 -192.738 -203.924
Initial 0.01545 -0.51439 -0.12434 0.866 -193.846 -209.103
Final 0.01499 -0.5112 -0.12907 0.840 -192.644 -217.058
Initial 0.01515 -0.50641 -0.13034 0.849 -190.839 -219.194
Final 0.01555 -0.50596 -0.12739 0.871 -190.669 -214.233
Initial 0.01515 -0.50181 -0.12616 0.849 -189.105 -212.164
Final 0.0147 -0.50973 -0.12513 0.824 -192.090 -210.432
Initial 0.01443 -0.49566 -0.12607 0.808 -186.788 -212.013
Final 0.01572 -0.50972 -0.12007 0.881 -192.086 -201.923
Initial 0.01568 -0.49628 -0.12466 0.878 -187.021 -209.642
Final 0.01463 -0.50581 -0.1265 0.820 -190.613 -212.736
Initial 0.01452 -0.50299 -0.12746 0.813 -189.550 -214.350
Final 0.01424 -0.51381 -0.12562 0.798 -193.628 -211.256
Initial 0.01425 -0.51304 -0.12592 0.798 -193.337 -211.761
Final 0.01468 -0.51452 -0.126 0.822 -193.895 -211.895

-1.39 2.07

6.14 -0.48 0.49

-1.32 0.51 3.51

5.92 8.99 10.50

7.95

-

7.34 0.03

6.93 -1.90 -1.47

1.95 -2.13 1.45

-2.97 -0.29 -0.06

11-002 CPTU2-01 4/3/2011
Finn H. & James 

S.

11-002 CPTU2-02 4/3/2011
Finn H. & James 

S.

11-002 CPTU2-02a 4/3/2011
Finn H. & James 

S.

11-001 CPTU2-05 4/2/2011
Finn H. & James 

S.

-2.59 1.33 2.98

3.02 0.62 -3.73

-2.61 0.09 2.29

3.02 -1.57 0.82

-8.56 -2.80 4.88

11-001 SCPTU2-02 4/1/2011
Finn H. & James 

S.

11-001 CPTU2-03 4/1/2011
Finn H. & James 

S.

11-001 CPTU2-04 4/1/2011
Finn H. & James 

S.

- -

-2.68 -2.23 -3.00

11-001 CPTU2-01 3/31/2011
Finn H. & James 

S.

10-010b SCPTU2-04a 11/20/2010 Finn H. & James 
S.

10-010b SCPTU2-05 11/20/2010 Finn H. & James 
S.

10-010b SCPTU2-02 11/19/2010 Finn H. & James 
S.

10-010b SCPTU2-03 11/20/2010 Finn H. & James 
S.

10-010b SCPTU2-04 11/20/2010 Finn H. & James 
S.

-1.39 -1.93

11/7/2010

11/7/2010

10-010b SCPTU2-01 11/19/2010 Finn H. & Elliott 
M.

3.11

10-010c CPTU2-01 11/22/2010
Finn H. & James 

S.

10-010c SCPTU2-02 11/28/2010
Finn H. & James 

S.

3.76

Finn H. & Skyler 
N.

Finn H. & Skyler 
N.

4.24 -67.22 0.69

10-009

10-009 SCPTU2-04

SCPTU2-03 17.97 0.65 -1.38

-0.80 6.19

3.04 -0.56 -0.74

10-010a SCPTU2-01 11/15/2010 Elliott M. & 
James S.

10-010a SCPTU2-02 11/18/2010 Elliott M. & 
James S.

-4.18

* CPTU performed using Purdue equiment where baselines were not obtained

Site Sounding Date Operator Baseline TIP FRICTION u2

TIP
(MPa)

FRICTION
(kPa)

u2

(kPa) TIP FRICTION u2

Output Units Percent Shift

Initial 0.0151 -0.49982 -0.12521 0.846 -188.355 -210.567
Final 0.01479 -0.36268 -0.12535 0.829 -136.675 -210.802
Initial 0.01469 -0.35253 -0.12626 0.823 -132.850 -212.332
Final 0.01428 -0.35367 -0.12653 0.800 -133.279 -212.786
Initial 0.01481 -0.35453 -0.12538 0.830 -133.603 -210.852
Final 0.01511 -0.35672 -0.12637 0.847 -134.429 -212.517
Initial 0.01293 -0.34863 -0.12799 0.724 -131.380 -215.242
Final 0.0135 -0.34219 -0.12504 0.756 -128.953 -210.281
Initial 0.01314 -0.32479 -0.12626 0.736 -122.396 -212.332
Final 0.01336 -0.34191 -0.12536 0.749 -128.848 -210.819
Initial 0.01314 -0.341 -0.12823 0.736 -128.505 -215.645
Final 0.01456 -0.34855 -0.12497 0.816 -131.350 -210.163
Initial 0.01274 -0.35354 -0.12664 0.714 -133.230 -212.971
Final 0.01296 -0.34777 -0.12556 0.726 -131.056 -211.155
Initial - - - - - -
Final - - - - - -
Initial 0.01246 -0.34923 -0.12547 0.698 -131.606 -211.004
Final 0.01295 -0.34707 -0.12215 0.726 -130.792 -205.421
Initial 0.01265 -0.34061 -0.13393 0.709 -128.358 -225.231
Final 0.01262 -0.3565 -0.12229 0.707 -134.346 -205.656
Initial 0.01242 -0.35963 -0.12579 0.696 -135.525 -211.542
Final 0.01239 -0.35897 -0.12189 0.694 -135.277 -204.983
Initial 0.01259 -0.36194 -0.12425 0.705 -136.396 -208.952
Final 0.0134 -0.35833 -0.13482 0.751 -135.035 -226.728
Initial - - - 0.647 -44.511 -247.116
Final - - - - - -
Initial - - - 0.171 11.919 165.407
Final - - - - - -
Initial - - - -0.710 -45.655 -250.817
Final - - - - - -
Initial 0.01348 -0.37318 -0.12392 0.755 -140.632 -208.397
Final 0.01258 -0.35791 -0.11981 0.705 -134.877 -201.485
Initial 0.01573 -0.36628 -0.12282 0.881 -138.031 -206.547
Final 0.01284 -0.35496 -0.12194 0.719 -133.765 -205.067
Initial 0.01345 -0.34841 -0.12487 0.754 -131.297 -209.995
Final 0.01315 -0.35782 -0.11687 0.737 -134.843 -196.541
Initial - - - 0.248 -7.109 -171.340
Final - - - - - -

11-005 CPTU2-09 6/9/2011
Seth S. & Finn H.

* * *

6.91 4.18 3.37

20.23 3.14 0.72

2.26 -2.66 6.62

CPTU2-06 6/8/2011
Finn H. & Seth S.

11-005

11-005 CPTU2-07 6/8/2011
Finn H. & Seth S.

11-005 CPTU2-08 6/9/2011
Finn H. & Seth S.

* * *

11-005 CPTU2-04 6/7/2011
Seth S. & Finn H.

11-005 CPTU2-05 6/7/2011
Seth S. & Finn H.

* * *

* * *

* * *

2.07 31.80 -0.11

2.83 -0.32 -0.21

-2.01 -0.62 -0.79

11-002 SCPTU2-03 4/3/2011
Finn H. & James 

S.

11-002 SCPTU2-04 4/3/2011
Finn H. & James 

S.

11-002 CPTU2-05 4/4/2011
Finn H. & James 

S.

11-003 CPTU2-04 6/1/2011 Finn H., James 
S., & Seth S.

6/1/2011CPTU2-0511-003 Finn H., James 
S., & Seth S.

11-003 CPTU2-06 6/2/2011 Finn H., James 
S., & Seth S.

11-004 CPTU2-05 6/6/2011
Finn H. & Seth S.

11-003 CPTU2-07 6/3/2011  James S., & Seth 
S.

11-003 CPTU2-08 6/3/2011
Seth S. & Finn H.

11-004 CPTU2-03 6/4/2011 Finn H., James 
S., & Seth

-4.56 9.09

0.24 0.18

11-004 CPTU2-04 6/5/2011 Finn H., James 
S., & Seth

11-004 CPTU2-04a 6/5/2011 Finn H., James 
S., & Seth S.

-6.23 1.00 -8.16

3.15

11-004 CPTU2-06 6/6/2011
Seth S. & Finn H.

-4.31 1.86 2.33

-1.66 -5.14 0.72

-10.25 -2.19 2.58

-1.71 1.65 0.86

-3.86 0.62 2.68

0.24

* CPTU performed using Purdue equiment where baselines were not obtained
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