v CEn Characterizing Rider

o
\o? 3 \NFRAs r,?:f/p Safety in terms of Asphalt
g >~ Pavement Surface
z & m=  Texture
% 9
% N

4

£ A
Cx g goV

CFIRE 07-08
C F I R E October 2013

National Center for Freight & Infrastructure Research & Education
Department of Civil and Environmental Engineering

College of Engineering

University of Wisconsin—Madison

Authors:

Hussain U. Bahia,
Mozhdeh Rajaei,

Nima Roohi Sefidmazgi

Principal Investigator:

Hussain U. Bahia, Ph.D.,

Professor

Department of Civil & Environmental Engineering
UW-Madison



Technical Report Documentation Page

1. Report No. 07-08 2. Government Accession No. 3. Recipient’s Catalog No.
CFDA 20.701
4. Title and Subtitle 5. Report Date October 2013
Characterizing Rider Safety in terms of Asphalt Pavement Surface Texture 6. Performing Organization Code
7. Author/s 8. Performing Organization Report No.

Hussain Bahia,
Mozhdeh Rajaei, Nima Roohi Sefidmazgi

10. Work Unit No. (TRAIS)

9. Performing Organization Name and Address

National Center for Freight and Infrastructure Research and Education (CFIRE) 11, Contract or Grant No.
University of Wisconsin-Madison
1415 Engineering Drive, 2205 EH DTRTO06-G-0020

Madison, WI| 53706

13. Type of Report and Period Covered

12. Sponsoring Organization Name and Address Final Report [12/01/12 -
09/30/13]
Research and Innovative Technology Administration 14, Sponsoring Agency Code

U.S. Department of Transportation
1200 New Jersey Ave, SE
Washington, D.C. 20590

15. Supplementary Notes

Project completed for USDOT’s RITA by CFIRE.

16. Abstract

The overall goal of the pavement design is to meet the intended service life and more importantly to provide a safe riding surface for the traveling
public. Therefore, pavements can experience structural failure (i.e. rutting or cracking) or functional failures, where the pavement becomes unsafe
from a riders perspective due to a lack of sufficient surface texture (friction). Several countries within the European Union have specifications related
to measurement of surface texture already in place to ensure a minimum level of friction. The barrier to implementing similar practices in the United
States is in further development of friction measurement and analysis methods. Measuring pavement friction involves specialized equipment with a
relatively high initial cost. In addition, many devices require that measurements be made on field pavement sections, incurring further delay in
opening a new pavement to traffic. Several recent studies have correlated asphalt pavement surface texture with friction using relatively inexpensive,
non-intrusive devices. These devices can be used in the laboratory as well as in the field and have shown promise in estimating not only pavement
surface texture and friction, but also noise emissions. With further development, these methods will give pavement designers the necessary tools to
evaluate asphalt pavement surface texture in terms of pavement friction, promoting development of new specifications. This project refines and
applies these methods to several plant produced mixtures to estimate surface texture and friction. Limits on the mix design parameters most affecting
rider safety (friction) will be proposed.

17. Key Words 18. Distribution Statement

o ) No restrictions. This report is available through the Transportation Research Information
Friction, Pavement surface texture, Mean Profile | services of the National Transportation Library.

Depth

19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. Of Pages | 22. Price
Unclassified 56 -0-

Unclassified

Form DOT F 1700.7 (8-72) Reproduction of form and completed page is authorized.



DISCLAIMER

This research was funded by the National Center for Freight and Infrastructure Research and
Education. The contents of this report reflect the views of the authors, who are responsible for
the facts and the accuracy of the information presented herein. This document is disseminated
under the sponsorship of the Department of Transportation, University Transportation Centers
Program, in the interest of information exchange. The U.S. Government assumes no liability for
the contents or use thereof. The contents do not necessarily reflect the official views of the
National Center for Freight and Infrastructure Research and Education, the University of
Wisconsin, the Wisconsin Department of Transportation, or the USDOT’s RITA at the time of
publication.

The United States Government assumes no liability for its contents or use thereof. This report
does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and
manufacturers names appear in this report only because they are considered essential to the
object of the document.



PROJECT DECRIPTION

The overall goal of the pavement design is to meet the intended service life and more importantly
to provide a safe riding surface for the traveling public. Therefore, pavements can experience
structural failure (i.e. rutting or cracking) or functional failures, where the pavement becomes
unsafe from a riders perspective due to a lack of sufficient surface texture (friction). Several
countries within the European Union have specifications related to measurement of surface
texture already in place to ensure a minimum level of friction. The barrier to implementing
similar practices in the United States is in further development of friction measurement and
analysis methods. Measuring pavement friction involves specialized equipment with a relatively
high initial cost. In addition, many devices require that measurements be made on field pavement
sections, incurring further delay in opening a new pavement to traffic. Several recent studies
have correlated asphalt pavement surface texture with friction using relatively inexpensive, non-
intrusive devices. These devices can be used in the laboratory as well as in the field and have
shown promise in estimating not only pavement surface texture and friction, but also noise
emissions. With further development, these methods will give pavement designers the necessary
tools to evaluate asphalt pavement surface texture in terms of pavement friction, promoting
development of new specifications. This project refines and applies these methods to several
plant produced mixtures to estimate surface texture and friction. Limits on the mix design
parameters most affecting rider safety (friction) will be proposed.
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CHAPTER 1. INTRODUCTION

SIGNIFICANCE AND PURPOSE

In recent years, pavement designers are increasingly challenged by achieving ideal surface
friction properties to enhance drivers’ safety, through mixture design and material selection.
Sufficient pavement texture is needed to ensure adequate friction between tires and the
pavement, though too much texture can result in detrimental consequences related to tire
wear and fuel consumption. Only with sophisticated finite element modeling software and
analysis tools have researchers begun to understand how complex the interaction at the tire-
pavement interface truly is. Yet characterization of the tire surface alone is insufficient for
describing the tire-pavement interaction, as pavement surface texture characteristics also
contribute significantly to the tire-pavement relationship. Pavement mixture design
specifications and material selection influences skid resistance, therefore, a clear
understanding of relationship between pavement mixture design properties and surface
friction is needed.

In the present study, the "Surface Laser Profilometer" (SLP) device is used to
measure surface texture, by scanning the surface of laboratory compacted and field core
samples, from which a surface texture profile is derived. Surface texture data is analyzed to
calculate the "Mean Profile Depth" (MPD). After the SLP scans the mixture sample or
pavement surface profile, macro-texture (spatial wavelengths ranging from 0.5 mm to 50
mm) parameters and micro-texture (spatial wavelengths less than 0.5 mm) parameters can
be extracted using signal processing techniques and related to friction properties.

Statistical analysis and neural networks modeling are used to find relationship
between the MPD results estimated from laser profilometer measurements and mixture
design properties (i.e., aggregate size, gradation curve shape, binder content, air voids, and
volumetric properties). Promising trends are observed in the data that can potentially be
used as guidance for mixture designers to optimize mixture design properties in order to
achieve better pavement surface friction and thus enhance drivers' safety.

Additionally, relationships between field measured friction (mainly Friction Number
(FN)) and laboratory measured texture parameters are developed. FN values measured by
using the locked-wheel tire test in the field were taken from the MnROAD test track
database and used for analysis. It is shown that there is a correlation between FN and MPD,
presenting the opportunity to achieve a target value of friction in the field through materials
selection in the mix design phase supplemented with laboratory measurement and analysis
of friction properties. Such relationships between laboratory measurements and field friction
could lead to better control of pavement surface friction, thus allowing for control of both
pavement structural and functional performance.

Using statistical analysis and artificial neural network modeling, mixture design
parameters (i.e. volumetric and aggregate gradation properties) could be related to
laboratory texture measurements (MPD). Therefore, knowing mixture design properties can
lead to the estimation of road texture parameters. It is also shown that pavement texture is
mainly controlled by aggregate gradation and mixture volumetric characteristics.
Additionally, it was shown that increasing the distance of the gradation curve from the



maximum density line is more important than the overall coarseness or fineness of the
gradation in terms of increasing the expected texture. Laboratory measured friction
parameters (MPD) can be related to field friction values (FN) using regression analysis.
Utilizing the models developed in this study, by further investigation, mixture designers can
have a guideline to estimate friction. Models developed in this study showed that the
measurements for field and laboratory compacted samples from SLP device can be used to
estimate friction parameters.

RESEARCH OBJECTIVES

The objectives of this work are focused on developing methods to estimate field friction
based on laboratory measured samples, and understanding how different mixture design
parameters affect surface texture characteristics. The specific objectives include:

1. Evaluating the relationship of mixture design parameters (i.e. volumetric and
aggregate gradation properties) to laboratory texture measurements (MPD).

2. Estimation of pavement texture parameters based on mixture design properties.

3. Evaluating the relationship of laboratory measured texture parameters (MPD) to
field friction values (FN).

4. Proposing a guideline model for mixture design to estimate friction.



CHAPTER 2. LITERATURE REVIEW

This chapter highlights the findings of the investigation in literature, focusing mainly on
texture and friction of asphalt pavements. It begins with an introduction to safety
considerations, surface texture characterization, and factors influencing surface texture of
pavements. The second section focuses on friction characterization, friction mechanisms
between tire and pavement, factors influencing friction, and friction measurement methods.
The literature review also includes a description of the measurement and analysis system
used for this research.

Safety Considerations

The relationship between surface texture and accident rates has been well documented over
the past 30 years (Noyce et al 2007, Hall et al 2009). Safety becomes particularly important
under wet conditions, where a lack of adequate surface texture dramatically increases the
risk of hydroplaning and loss of vehicular control. Thus, a primary functional quality of
pavements is to provide adequate friction, as it is linked to the safety of the roadway.

Increasing demand for mobility which results in high number of vehicles and more frequent
crashes makes the safety of both the road and driversa high priority issue.. alone recent
study estimates that the cost for highway accidents in 2000 exceeded $230 billion (Noyce et
al 2007). Many of these crashes are tied to wet road conditions, and possibly to inadequate
friction characteristics. This cost is expected to increase with increasing demand for
transportation facilities domestically and abroad. Therefore, advancing the knowledge
regarding improved friction characteristics and adopting better design methods to improve
friction could refocus limited financial resources being spent today on crash investigations.

Because surface texture is directly related to friction, and particularly micro-texture (spatial
wavelengths less than 0.5 mm) and macro-texture (spatial wavelengths ranging from 0.5
mm to 50 mm) levels, measuring surface texture serves as an indicator for friction, and
hence for safety. Macro-texture, and to a lesser degree micro-texture, is a major contributor
to friction safety characteristics (Hall et al 2009). High levels of macro-texture allow for
water drainage, which minimizes the risk of hydroplaning in wet conditions.

Other studies have investigated the link between wet-weather crashes and pavement friction.
Rizenbergs et al found higher wet crash rates for lower values of skid number (Rizenbergs
et al 1972). Giles et al and Cairney investigated crash incidence as a function of skid
number and demonstrated that crash incidence increases quickly once a minimum threshold
value is reached (Giles et al 1962, Cairney 1997). McCullough and Hankins showed that
most crashes occur with low pavement friction levels and very few crashes occur with high
levels of pavement friction (McCullough and Hankins 1966). Kamel and Gartshore
described how resurfacing a few dangerous sections of Canadian highways significantly
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reduced crashes in wet and dry conditions (Kamel & Gartshore 1982). Wallman and Astrom
suggested that increasing pavement friction can significantly reduce the incidence of crash
rates (Wallman & Astrom 2001). Kuttesch has suggested that when friction level falls below
a minimum threshold value, the likelihood of wet crashes increases significantly (Kuttesch
2004). In summary, many studies have shown that safety is tied to pavement friction, and
friction is related to surface texture. Thus, improving surface texture characterization
methods and friction measurement methods can lead to fewer crashes and safer roads.

Surface Texture Characterization

Surface texture refers to asperities in the pavement surface that arise from the combination
of different aggregate shapes and sizes used in asphalt mixtures. Surface texture is defined
in terms of wavelength (A, distance along the surface) and amplitude (a, height above the
surface). Fundamentally, surface texture is a the property that can be controlled in pavement
design that affects the friction and safety in roadways. Based on the definition by the
Permanent International Association of Road Congresses (PIARC) in 1987, surface texture
is divided into four ranges in terms of texture wavelength and amplitude (Henry, 2000).
The micro-texture which is the smallest range, represents the wavelengths smaller than 0.5
mm. The macro-texture refers to wavelengths from 0.5 mm to 50 mm. The roughness on the
surface of each coarse aggregate is related to micro-texture while the overall pavement
surface roughness (i.e. different aggregate arrangement) can be described by macro-texture
(Ivan, et al., 2010). The other two ranges of surface texture are called Mega-texture and
Unevenness. Mega-texture refers to spatial wavelengths ranging from 50 mm to 0.5 m with
amplitudes ranging from 0.1 mm to 50 mm. The largest range is called unevenness or
roughness and encompasses spatial wavelengths greater than 0.5 m. Figure 1 displays the
different ranges of surface texture graphically, and Table 1 summarizes these ranges. Each
range of surface texture impacts tire-pavement behavior differently, so coupling the
appropriate spatial scale with the effect in question is critically important.
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Figure 1. Graphical representations of four surface texture regimes.

Table 1. Texture wavelength ranges

Region Wavelength
Micro-texture A <0.5 mm
Macro-texture 0.5 mm <A <50 mm
Mega-texture 50 mm <A <500 mm

Unevenness 0.5m<A<50m

The influence surface texture at different spatial scales on vehicle impacts is provided in
Figure 2. At large texture wavelengths (A > 50 mm) and low spatial frequencies (f <20 Hz),
detrimental effects are observed in terms of rider comfort, vehicle wear, vehicular noise,
rolling resistance, and tire-road friction. In the mega-texture regime, rolling resistance and
vehicle noise become particularly significant. As the spatial frequency increases to the
macro-texture range, tire-road friction becomes more significant. Thus, optimizing the
surface texture requires a balance of sufficient friction, and minimal adverse vehicle impacts
and costs.
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Figure 2. Influence of texture wavelength on vehicle response.

Current methods used to characterize surface texture, mainly rely on the mean profile depth
(MPD). MPD provides a a two-dimensional representation of the surface texture (ISO
13473-1 2004). However, this parameter only provides averaged values for surface texture
and does not have sufficient resolution to quantify the distribution of asperities at the
pavement surface. A schematic of determination of MPD is provided in Figure 3Error!
Reference source not found. Although the MPD is simple to measure and has shown some
relationships to pavement friction, it has been recognized that knowing the distribution of
surface asperities leads to improved methods for friction characterization. Spectral analysis
techniques are suitable for quantifying the distribution and may improve upon MPD by
capturing the texture distribution over a spectral scale encompassing multiple texture
regimes. The decomposition of the texture to smaller scales allows for better control of
friction properties, based on this concept there is an opportunity include consideration of
friction into the mix design process by defining the impacts of aggregate and mixture
volumetric properties on mixture surface properties. A simple method for measuring the
distribution is not yet available.
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Figure 3. Illustration of mean profile depth.

FRICTION CHARACTERIZATION

Friction is defined as the force that acts opposite to the direction of motion imparted by the
pavement surface on a rotating tire. A rolling or sliding tire will generate friction as it moves
across the pavement surface. In general, higher levels of friction correspond to greater
operator control of the vehicle (Hall et al 2009). The friction coefficient u represents the
quotient of the tangential friction force F and the vertical load F,, imparted from the vehicle
to the axle and wheel hub. Figure 4 shows two idealized tire-roadway interaction diagrams
and depicts the forces on a rotating tire due to contact with the pavement surface in free-
wheeling and constant-braked configurations.
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Figure 4. Tire free-body diagrams.

Friction at the tire-pavement interface comprises two friction components in longitudinal
and tangential directions. Longitudinal friction forces manifest in the direction of travel in
two ways (Hall et al 2009). When the tire is free to roll and no brakes are applied, the
relative speed between a point on the tire circumference and the pavement is zero. This is
referred to as the slip speed S. With the brakes applied, the slip speed increases from zero to



the speed of the vehicle. Meyer described this relationship mathematically as follows
(Meyer 1982):

S=V—-V,=V—(068 XX r) 1)

Where: S Slip speed, mi/hr.
\Y Vehicle speed, mi/hr.
Vp Average peripheral speed of the tire, mi/hr.
1) Angular velocity of the tire, radians/sec.
r Average radius of the tire, ft.

Two conditions are worth noting. With no brakes applied, the average peripheral speed of
the tire Vp equals the vehicle speed V. In this case the slip speed S is zero. With brakes fully
applied, the peripheral speed of the tire Vp is 0 such that the vehicle speed V equals the slip
speed S. Slip speed is important because it will be one of the parameters accounted for in the
friction models and indices that will be presented in following sections. Because the slip
speed is strongly related to macro-texture, there now exists a means to connect vehicle
dynamics with friction characteristics.

Figure 5 depicts the relationship between the friction coefficient and tire slip. In the free-
rolling condition, the coefficient of friction approaches zero and increases to a critical peak
friction value as the tire slip and braking increases. Beyond the critical slip value, the
coefficient of friction diminishes to a terminal value as the fully-locked, full-sliding
condition is reached (Hall et al 2009, Henry 2000).
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Figure 5. Friction coefficient and tire slip relationship.

A second source of friction originates from lateral friction forces. Lateral friction forces
manifest as a vehicle turns, changes lanes, or compensates for cross winds or pavement
cross-slopes (Hall et al 2009). The lateral friction force acts outward on tire tread elements
and is counter to the centripetal force acting to pull the vehicle inward toward the center of a
curve.

Factors Affecting Friction

Factors affecting friction can be divided into four categories which are pavement surface
characteristics, vehicle characteristics, tire characteristics, and environmental conditions
(Hall, et al., 2009; Rado, 2005). The focus of this study is to characterize the pavement
surface characteristics (i.e. surface texture) using newly developed lab tests and analysis and
developing relations between important pavement material and design factors with
pavement surface texture and friction as result . Based on the literature review performed in
this study the factors listed in Table 2 have been found to potentially affect surface friction.
Factors mentioned in Table 2 are used to identify and prioritize factors entered into the
analysis performed in the present work.
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Table 2. Mixture Properties Affecting Surface Texture in Asphalt Pavements (Henry,
2000; Hall, et al., 2009; Sandberg & Ejsmont, 2000; AASHTO, 1976; PIARC, 1995;
Ahammed & Tighe, 2009 )

Property Texture Range

2' izgm(rlllall/ll\,gg))(lmum Aggregate Macro-Texture
Mixture Coarse Aggregate Macro-Texture
Type (shape) Micro-Texture
Mixture Fine Aggregate Type Macro-Texture
(shape) Micro-Texture
Asphalt Binder Content Macro-Texture
Aggregate Gradation Macro-Texture
Mixture Air Voids Macro-Texture

As shown in the Table 2, aggregate shape and texture are more important to control micro-
texture while gradation, mixture properties and compaction are mainly affecting macro-
texture.

A significant amount of research has focused on tire and vehicle characteristics, with tire
companies investing considerable resources in the interest of designing durable tires with
efficient tread patterns. Vehicle and tire considerations are not the focus of this study, as this
type of analysis necessitates use of finite element models to capture vehicle dynamics and is
beyond the scope of this investigation. Rather, the focus here will be on how pavement
surface characteristics affect friction and how to control pavement surface texture using
current mix design procedures.

Properties of materials used in pavements typically affect micro-texture and macro-texture,
while construction techniques and pavement distresses typically affect larger texture
wavelength regimes such as mega-texture and unevenness. If particular mix design
parameters exhibit a significant effect on micro-texture and macro-texture properties, then
the mix design can be controlled to achieve optimal levels of micro-texture and macro-
texture wavelengths as these regimes affect noise and friction.

Friction number (FN)

The friction number (FN) or skid number (SN) is the average coefficient of friction
measured by a locked-wheel test device as specified in ASTM E274. Almost all states in the
United States are using locked-wheel devices to evaluate friction. This method tests
frictional properties for emergency braking without anti-lock braking systems. The method
differs from side-force or fixed-slip methods in that the slip speed is equal to the vehicle
speed, the wheel remains locked, and there is no rotation of the tire (Hall, et al., 2009). Tests
can be conducted with ribbed tire or smooth tire at a range of speeds. The friction number
(FN) is calculated as:
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FN (V) =100 1 = 100 X - )
Where: \Y Velocity of the test tire, km/hr.

U Coefficient of friction.

F Tractive horizontal force applied to the tire, kg.
W Vertical load applied to the tire, kg.

Friction Measurement Methods

Friction measuring devices may be classified as devices operating at highway speeds and
devices requiring traffic control (Hall, et al., 2009). Highway-speed friction test methods
encompass locked wheel (ASTM E274), side-force (ASTM E670), fixed-slip (various
ASTM standards) and variable-slip (ASTM E1859) test devices. Each of these devices
utilizes a tow trailer or specially-instrumented vehicle. The test methods report various
measurement indices, such as friction number (FN). The devices can be used for network-
level friction monitoring and field testing, though some devices are limited in their ability to
measure curved sections and heavily damaged sections. The advantage of these devices is
that they utilize full-scale tires at highway speeds, which gives a more accurate
representation of friction performance of actual vehicle tires. Major disadvantages include
the level of technical training required, cost, and sensitivity to surface irregularities such as
potholes and cracks.

Rather than using highway-speed devices, this study makes use of devices requiring traffic
control. While stopping distance measurements (ASTM E445) and deceleration rate
measurements (ASTM E2101) are typically used for crash investigations, other examples of
test methods requiring traffic control are more applicable to this investigation. One portable
tester used to measure friction characteristics is the Dynamic Friction Tester (DFTester).
Portable devices used to evaluate surface texture are the circular track meter (CTM), and a
stationary linear profiler (SLP).

Test Methods

This study focuses on the results of three macro-texture characterization methods which is a
volumetric method, and two laser methods, one of which is circular while the other is linear.
For macro-texture (0.5 mm < A < 50 mm) evaluation, the Circular Track Meter (CTM)
provides estimates of high-speed friction potential. The next device, the Stationary Linear
Profiler (SLP), has been modified and used extensively in this study, as will be described in
detail. It was selected as the most promising method to use to evaluate both macro-texture
and micro-texture in both the laboratory and field.

Circular Track Meter (CTM)

12



The Circular Track Meter (CTM) is a non-contact laser device used to analyze pavement
macro-texture. ASTM offers specifications for usage of the device (ASTM E2157 2009).
Manufactured in Japan by the Sunny Koken Company, the charge-coupled device (CCD)
laser profiler is mounted on a rotating arm at a fixed location above the surface. A laptop
computer controls the device operation. After initiating a measurement, a direct current
(DC) motor drives the arm and traces a circle with a diameter of 284 mm on the pavement
surface. Once the measurement is complete, software algorithms partition the segment into
eight sections. Mean profile depth (MPD) and root mean square (RMS) values are computed
for each section. The CTM reports 1024 points, a convenient number of points for applying
Discrete-Time Fourier Transform (DFT) methods to determine the texture spectrum. Figure
6 shows the device. Applied Pavement Technologies, Inc. provided the CTM equipment to
researchers for evaluation.

Figure 6. The Circular Track Meter (CTM) is used to evaluate pavement macro-
texture.

The CTM delivers a precise estimate of pavement macro-texture indicators, including mean
profile depth (MPD) and root mean square (RMS) values. The precision value for eight
measurements on same surface is 0.03 mm (ASTM E2157 2009). The device also collects a
sufficient number of data points for spectral analysis, which will be explained in subsequent
sections. Furthermore, it is a non-destructive test method and thus can be used for evaluation
of in-service pavements. .

Despite all advantages, the CTM also has a few disadvantages. The cost of the CTM may
prohibit laboratories or state highway agencies from investing in this device. More training
is needed to operate this device compared to other devices. Due to the static nature of the
device, traffic control is required for field evaluations. The device also requires samples
with a minimum physical size of 600 mm by 600 mm. The required sample size limits
laboratory evaluations to those labs with access to slab compaction or similar devices.
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Many researchers have experimented with the CTM device. Flintsch et al compare macro-
texture measurements of three laser devices and the sand patch method (Flintsch, et al.,
2003). The experimental design encompassed the Virginia Smart Road, in-service
highways, and airfield surfaces. Of the three laser devices evaluated, the CTM demonstrated
the highest correlation to volumetric macro-texture measurements. Hanson and Prowell
compare CTM MPD measurements with Sand Patch Method (SPM) MTD measurements at
the NCAT Test Track for a variety of pavement surfaces (Hanson & Prowell, 2004). Results
indicate strong relationships between CTM and SPM values. Perhaps surprisingly, the study
found that CTM measurements are more variable than SPM results and suggests that less
technician skill is required to operate the CTM compared to other macro-texture
measurement devices.

Stationary linear profiler (SLP)

Improved surface characterization technologies utilizing simple laser-based profiling
techniques are effective for quantifying texture properties (Losa et al 2005, Losa et al 2007,
Losa & Leandri 2010). Linear profiling methods have been used on pavement surfaces for
the past 50 years. Use of profiling methods, and particularly methods that can be used at
highway speeds, have grown in recent years as highway agencies have recognized the need
for improving pavement management strategies and assessing both structural and functional
distresses. Profilers have been used extensively to measure surface roughness. More
recently, linear profiling methods have been used to estimate frictional properties. As an
extension of these concepts, signal processing theories it is possible to define two-
dimensional texture profiles to evaluate the texture spectrum.

Laser profilers are differentiated as mobile profilers and stationary profilers in International
Organization for Standardization (ISO) standards. Mobile profilers are non-contact devices
attached to vehicles that are used to measure pavement surface profiles at highway speeds.
Stationary profilers are also non-contact devices but they can be used in field and laboratory
environments while remaining static. A stationary linear profiler (SLP) is the primary device
used here to evaluate macro-texture and for comparison to other macro-texture and micro-
texture measurement methods. Specifications for both mobile and stationary laser profilers
are outlined in a series of ISO standards (ISO 13473 2002/2004/2008). ASTM standards
provide less direction, though methods are given for calculating mean profile depth (ASTM
E1845 2009).

The SLP assembly used in this study, shown in Figure 7, was developed as part of the
Asphalt Research Consortium project (Miller, et al., 2012). As with the CTM, the SLP
measures the pavement profile using a laser, though the profile is linear rather than circular.
Using analysis techniques outlined in ISO standards (ISO 13473-4 2008), MPD and root
mean square (RMS) values are calculated, and used to determine the power spectral density
(PSD). The PSD is a mathematical representation of the signal power distribution as a
function of frequency. Spectral analysis methods based on signal processing techniques
allow for characterization of the surface asperity distribution. Applying Discrete Fourier
Transform (DFT) methods to surface profiles allows for calculation of PSD and texture
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level distributions. Methods for acquiring and analyzing profile data will be detailed in the
next chapter.

CONTROLLER SAMPLE

Figure 7. A Stationary Linear Profiler (SLP) evaluates micro-texture and macro-
texture (Miller, et al., 2012).

Regression Analysis Approach

In this study, regression analysis was performed using Minitab16. MPD derived from SLP
output was related to mixtures’ volumetric and design properties, including bulk specific
gravity (Gnp), air voids, binder content (Pp), and aggregate gradation properties including
the nominal maximum aggregate size (NMAS), and gradation Weibull parameters, k and A.
Weibull distribution which used to show the cumulative percent passing size of aggregates,
has the form as shown in equation 3.

F(x,k,A)=1-— e_(;l_c)x'c 3

where variable x is the aggregate size in millimeters, « is the shape factor and A is the scale
factor (Masad, et al., 2009). A sample of cumulative Weibull distribution is shown in Figure
8. For this figure, the data points are the actual aggregate gradation while the curve is the
Weibull distribution fitted to the data points for which «k is determined as 1.48 and A is 1.59.
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Figure 8. Cumulative Weibull distribution for aggregate gradation.

The statistical/regression models were developed for a wide range of selections of the
aforementioned parameters.

Artificial Neural Networks (ANN) Approach

Researchers have used Artificial Neural Networks in many different aspects of civil
engineering, particularly for situations in which the relationship between parameters
becomes complicated and nonlinear. ANN is mainly used when proper relationships have
not been established between input variables, large numbers of input variables exist, and the
relationships between input and output of the model is rather complex. Thus ANN was
deemed a suitable tool to model the relationship between surface texture, friction, and the
mixture design parameters that can potentially affect these properties. ANN has been
previously used in a number of pavement engineering studies, especially with regards to
modulus back calculation and estimation (Bing, et al., 2002; Sakhaeifar, et al., 2010; Zofka
& Yut, 2012).

ANN is a method mimics the neural system of human body means having several nodes and
neurons. In this method, there are some layers (one input layer, several hidden layers and
one output layer) containing nodes as shown in the Figure 9. These nodes in layers are
connected to each other using lines. Each line is assigned a “weight” as an indicator of the
effectiveness of that parameter in the output calculation. Several transfer functions are
applied to input data to provide the output. Basic transfer functions can be listed as linear,
exponential and hyperbolic tangent. Transfer functions are selected to minimize the number
of the nodes in hidden layer because more nodes in the hidden layers results in more
complicated network.
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Figure 9. Artificial Neural Network diagram.

The model which is developed using ANN has three logical steps:multiplication, summation
and activation. The dataset is randomly divided into two parts, 80 % of data are used for
training the network and the remaining data is used to verify the developed network
efficiency. Training the network will continue until the sum of squared errors between the
model-predicted output and the experimentally measured output is minimized. The result of
a network can be shown as a mathematical model contains weights, input, output, transfer
function and bias.

From mathematical point of view, the ANN model can be shown as:

y(k) = F (ZiZowi(k).x; (k) + b) (4)

Where:

e m is the number of connection lines as shown in FIGURE 9,
x; (k) is input value in discrete time k where i goes from 0 to m,
w; (k) is weight value in discrete time k where i goes from 0 to m,
b is bias,
F is a transfer function,
y(k) is output value in discrete time k.

More detailed information about ANN models can be found in several researches (Gurney,
1997; Krose & Smagt, 1996; Rojas, 1996).
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CHAPTER 3. METHODS AND MATERIALS

In this chapter, the analysis methods used to evaluate pavement surface texture and friction
characteristics are described. Data processing techniques related to analysis of the texture
spectrum are also discussed. Additionally, the field and laboratory materials used in the
evaluation are mentioned.

DATA ACQUISITION METHODS

This study utilizes the results of three devices for measuring texture and friction. Friction
devices are typically divided into those operating at highway speeds and those operating at
low speeds or remaining stationary (Hall, et al., 2009). The texture devices are typically
used to cover two primary texture ranges: macro-texture and micro-texture. Table 3
summarizes the devices, applicable test environments, and texture ranges.

Table 3. Summary of test devices, location, and texture range

Device Location and Type Texture Range
(CircularCT-I;gil:k Meter) Field Texture Macro-texture
SLP . Macro-texture,
(Stationary Linear Profiler) Field & Lab Texture Micro-texture

SLP Device Description

The SLP relies on the principle of optical triangulation to measure surface texture
characteristics. A test frame supports the laser and draw-wire sensor devices on one end and
a small motor at the other. The laser sensor projects a laser beam on the sample surface,
which manifests as a red spot on the sample. The laser beam is diffusely reflected to an
optical receiver array, which translates the light intensity of the reflected beam into an
analog voltage signal that is then transformed into an amplitude measurement. The SLP
triangulates surface amplitude as a motor pulls the laser assembly across the test frame at
low speeds. Amplitude is coupled with horizontal displacement via the draw-wire sensor to
define the surface profile. The combined amplitude-displacement measurement is registered
in the computer’s data acquisition card, which is transmitted to the software interface.

The laser used in this study is a CCD-type laser, model ILD 1700-40. Dimensions for the
laser sensor are shown in Figure 10. Profiles are obtained from several different orientations
in laboratory and field environments to reduce the effects of texture orientation on the
overall response. Several parameters define the laser sensor’s operational characteristics.
Measuring range, measuring rate, sampling rate, resolution and spot diameter are some of
the parameters used to characterize a laser sensor’s operational capacity. Table 4 lists
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relevant technical parameters related to the laser sensor’s operation. ISO documentation
outlines the technical requirements of the laser, and the reader should refer to these
specifications for exact requirements in terms of horizontal and vertical resolution, sampling
rate, and measuring rate (ISO 13473-3 2004). Data analysis templates can be configured to
account for the various laser specifications.

Table 4. Summary of SLP Specifications

Spot Diameter (um) 210
Measuring Range (mm) 40

Measuring Rate (Hz) 1250
Measuring Speed (mm/s) 37
Measuring Interval (points/mm) 15
Horizontal Resolution (pm) 4
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Figure 10. Schematic diagrams of the ILD 1700-40 laser sensor.

20



The draw-wire sensor, also referred to as the displacement sensor or encoder, is configured
to provide horizontal measurements at a fixed sampling rate. These readings coupled with
amplitude measurements obtained from the laser sensor provide a two dimensional texture
profile. In the test apparatus, the draw-wire sensor is physically attached to the laser sensor
via a metallic cable that extends from the encoder housing as the laser sensor traverses the
test frame. Care must be taken to ensure that the software is configured with the proper
encoder settings for the particular laser model selected. Verification experiments can
validate the accuracy of the laser sensor/encoder settings. The encoder model used in this
research is a Micro-Epsilon WDS-1000-P60 sensor.

The test frame is outfitted with several clamps that allow for easy height and span
adjustment. Height adjustment is critical because it ensures that the laser operates within its
measuring range, which for this laser sensor/encoder combination is 40 mm. Manufactured
on the UW-Madison campus, the test frame is made of industrial grade aluminum railing,
though other suitably rigid materials may also be used. The frame includes height adjustors
to ensure that the frame is level prior to testing. It is recommended to check that the frame
is level and parallel to the roadway or laboratory mix surface by use of a hand level.
Dimensions and specifications of the frame are available upon request.

The motor controller consists of a power switch, travel rate dial, and activation button. Low
motor speeds and a lubricated rail are recommended to helpreduce vibrations of the laser
and preserve the data integrity. A small piece of felt padding cushions the laser assembly as
it retracts toward the encoder following data acquisition. Travel speed is regulated to ensure
that motor operation does not introduce unnecessary vibrations to the laser sensor. Speed is
adjusted using the travel rate dial. The exact speed at which the motor pulls the laser sensor
across the test frame defines the measuring speed and depends on travel rate dial setting.

A standard power supply with adjustable voltage and amperage settings powers the laser
sensor. The power supply is readily available commercially. Power settings for the laser
sensor used in this research are limited to a maximum voltage of 24 V and a maximum
current of 150 mA. Power requirements may differ for other lasers, so manufacturer
recommendations must be consulted prior to operation. The greatest risk lies in overloading
the laser with excessive electrical current, which can burn out the laser sensor and render the
device inoperable. Because the laser is wired directly into the terminals of the power supply,
care must be taken to ensure that the wire leads are properly attached to positive and
negative terminals to avoid shorting out the device.

Additional data acquisition components are needed to couple laser sensor data with draw-
wire sensor data. Both the laser sensor and draw-wire sensor feed into a PCI card that
synchronizes data acquisition from the independent analog signals. The PCI card is housed
internally in a desktop computer possessing appropriate DAQ card bays. Related software
packages access the synchronized data for display and storage. The equipment manufacturer
Micro-Epsilon developed the integrated software package that allows the PCI card to record
laser/encoder displacement information. This research used the IF 2004 Encoder ILD 1700
V0.6 software application. A screenshot of the software application is shown in Figure .
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The software is relatively simple to use, though special attention must be given to a few key
fields to ensure proper data collection. The most convenient format for data output files is
*.txt files. These files are easily opened in spreadsheet and analysis software programs. Data
acquisition is triggered by the software upon activation of the motor controller and is

terminated once the measurement is complete.

File Edit Macro  Measurement  Extra  Wiew  Window 7
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Figure 11. A screenshot from the software application used to collect SLP data.

Field evaluation requires a few additional components to account for a lack of alternating
current electricity in field environments. These components supplement all of the
components described previously. For power, a 12 V battery is used to power the laser
sensor, motor controller, and data acquisition components. Deep-cycle batteries or similar
types are recommended due to their extended discharge time. A battery charger should be
used to charge the 12 V battery before and after field evaluations. A power inverter
transforms 12 V direct current power from the battery to the 110 V alternating current
needed by the test equipment. Because the PCI card requires a desktop computer for
operation, a laptop could not be taken into the field for field evaluations. Future
consideration could be paid to models that utilize smaller, portable PCI cards to enable
efficient setup of data acquisition components and devices.

SLP Data Processing

After recording the raw surface profile with the SLP, several transformation algorithms are
applied to the profile data. Data is imported into analysis spreadsheets as a *.txt file. Each
file has two columns: the displacement count registered by the draw-wire sensor; and the
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amplitude measurement recorded by the laser sensor. Removing invalid points, known as
drop-outs, is the first priority in processing the profile (Haykin and Van Veen 1999). This is
achieved in a three-step process. First, a device-dependent scale factor is applied to the raw
profile data. In this case, the scale factor is 4. The scale factor is related to coordinate the
measuring range of the laser and the capabilities of the software. In this case, the measuring
range of the laser sensor is 40 mm and the software can accommodate a measuring range of
10 mm,thus the profile data must be scaled by a factor of 4. Applying this scale factor
ensures that the analysis accounts for proper measuring range. In the second step, the profile
Is inverted to obtain a correct orientation. Once the profile is correctly oriented, the third
step includes removing the drop-outs from the profile by applying a numerical drop-out
threshold requirement. The occurrence of drop-outs increases with shiny surfaces and
porous surfaces. After removing drop-outs, the profile is considered to be conditioned.

Conditioned data must satisfy the mathematical requirements of the Discrete Fourier
Transform. Field data set is re-sampled at a 2-to-1 ratio to provide 2*? points or 4096 points.
Resampling of laboratory data is not necessary, which utilizes 2** points or 2048 points in
the DFT analysis. Related sensitivity analyses indicate that resampling the field profile at a
2-to-1 ratio does not affect the texture level response due to the sufficiently high horizontal
resolution of the laser. Higher resampling ratios may adversely affect the estimation of
micro-texture as the sampling interval approaches the micro-texture spatial limit of 0.5 mm.
While the selection of 2'2 points represents the maximum number of points allowed in
Microsoft Excel’s Fourier Analysis package, other analysis packages such as Matlab may
allow for a greater number of points to be processed and will increase data processing
efficiency. In this study all analysis was conducted using Microsoft Excel spreadsheets.

Figure 17 shows representative profiles of dense and porous pavements. Both profiles have
been conditioned and are ready for the next sequence of analysis algorithms. Note that the
horizontal scale is five times greater than that of the vertical scale to accentuate differences
in the profile type. Clearly the porous profile exhibits greater deviations in the amplitude,
whereas the dense profile shows smaller perturbations along the surface. Being able to
capture the distribution of these profile deviations is a primary advantage of using texture
spectral analysis methods rather than other macro-texture indicators like mean profile depth
(MPD). The method allows for characterization of the relative proportion of peaks and
valleys, whereas MPD values provide an average of the amplitude magnitude in two or three
dimensions, respectively. Likewise, micro-texture measurement methods such as the BPT
and DFT fail to capture the distribution of smaller spatial wavelengths.
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Figure 11. Profiles of dense and porous pavements.

Once the profile is conditioned and re-sampled, a second sequence of data transformations is
applied. First, a least-squares fitting algorithm is used to achieve a slope of zero for the
profile curve in a process known as slope suppression. Slope suppression eliminates a
positive or negative profile slope that could affect the results of the DFT. Following slope
suppression, the mean amplitude or y-intercept of the profile is set to zero in a process
referred to as offset suppression. Following slope- and offset-suppression, the profile is
subjected to a windowing algorithm to reduce the signal amplitude to zero at the edges of
the profile. Windowing reduces signal leakage at profile edges. In this case, a Split Cosine
Bell Window is an appropriate window since the profile is less than 1 m in length (1ISO
13473-4 2008). Other windows are specified in related 1SO standards and may be
appropriate for other evaluation systems. Once the profile is windowed, the Discrete Fourier
Transform can be applied to determine the texture level distribution.

Using techniques outlined in related 1SO standards, MPD values are calculated along with
the power spectral density (PSD). The Discrete Fourier Transform translates the random
surface profile into a series of complex sinusoidal waveforms. Coefficients arising from the
Discrete Fourier Transform are associated with complex sinusoids of different frequencies
(ISO 13473-2 2002). This series of waveforms forms the basis of the PSD, which defines
the distribution of waveforms for the profile over a wide range of frequencies. The
amplitude and texture level distributions originate from the power spectral density (PSD).
The texture level distribution provides a more detailed metric by which to evaluate texture.
This procedure follows the methods articulated by Losa et al and has been updated to meet
the research needs of this study (Losa et al 2005, Losa et al 2007, Losa & Leandri 2010).

The texture level distribution estimates the proportion of particular wavelengths in the
profile, which can be attributed to aggregate and mixture properties and related to frictional
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characteristics. These wavelengths are captured in spectral bands of different widths called
octave bands. The center wavelength of each octave band is represented by the symbol A.
Octave bands are calculated as 2", where n is an integer. For each octave band, the Discrete
Fourier Transform calculates the root mean square (RMS) value of the surface profile
amplitude, symbolized as a;. A reference root mean square value (arr) of 10° m is assumed
per the ISO 13473-4 standard. The texture profile level (Ltx), which is measured in decibels
(dB), is calculated as:

a;\z

Qre f

Four profiles are recorded for each laboratory SGC sample and field testing zone. Individual
profiles for each sample are averaged using a geometric mean formulation for a specified
octave band according to the following equation:

1 2 3 4
LTxa LTxa Lrxa Lrxa

10 10 + 10 10 + 10 10 + 10 10

’}‘;‘j” =10 X log( 2

(6)

Once the mean texture level (L7¢5") for a given octave band is known, texture parameters
can be constructed from any combination of the octave bands. The series of octave bands
encompassing the micro-texture and macro-texture wavelength ranges can be represented as
Ltx 0532 Note that the 4 values indicated in this parameter correspond to the central
wavelength in the octave band, though the actual bandwidth is characteristically larger since
the limits of the octave band extend beyond this central wavelength. For the micro-
texture/macro-texture indicator Ltx o532, the band corresponds to wavelengths ranging from
0.4 — 40.3 mm. The formula for calculating this texture parameter range is given in:

j Lmean

STXA
Lrx, inj = 10 xlog(z 10710 ) %)
A=i

Mean profile depth (MPD) values can be calculated from the profile by following the
procedure articulated in ISO 13473-1. Using an evaluation length of 100 mm, a series of
high-pass and low-pass filters are applied to the profile to remove low-frequency and high-
frequency content. The high-pass filter removes texture wavelengths greater than 100 mm.
After high-pass filtering, a low-pass filter is applied to the profile to remove frequencies
corresponding to texture wavelengths less than 2.5 mm. The evaluation length of 100 mm is
divided into two equal halves. In each 50 mm section, the highest peak is determined. The
MPD value represents the arithmetic average of the two peak values minus the average
profile amplitude.
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MATERIALS

In this study, researchers selected field samples from the Wisconsin Highway Research
Program (WHRP) and the Minnesota Department of Transportation pavement test track
facility (MnROAD) for laboratory texture measurement and use of field friction data and
measures. Additionally, data previously collected from a Wisconsin Highway Research
Program (WHRP) project and as part of the Asphalt Research consortium was also used in
the analysis and modeling effort conducted in the present study.

Friction data from the CTM and Friction Number tests, as well as the corresponding mixture
design information from 14 MnROAD cells were considered in the present study. Cores
from a number of these sections were acquired and used for derivation of laboratory texture
measurements using the SLP. The properties of the MNnROAD sections considered in this
study are shown in Table 5.

Table 5. Characteristics and Properties MNROAD Sections and field cores

MnROAD Bulk Specific

CELL/Section | Gravity (Gmb) | VTM (%) NMAS (mm)
1* 2.37 4.07 12.5
2 2.34 4.23 12.5
3 2.36 4.22 12.5
4 2.37 4.39 12.5
19* 2.34 3.53 12.5
22 2.36 3.83 12.5
24 2.36 3.66 12.5
27 2.35 3.34 12.5
31* 2.36 3.89 12.5
33* 2.38 4.60 12.5
34* 2.39 3.98 12.5
77* 2.37 4.50 12.5
86 2.02 19.90 12.5
87 2.36 4.90 12.5

*Field cores tested in laboratory
The cores from the WHRP study (Project ID 0092-12-02) contained reclaimed asphalt

pavement (RAP) and warm mix additives. Samples consisted of three different NMAS and a
single binder type. Sample characteristics for the field cores are given in Table 6.
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Table 6. Characteristics of the WHRP (Project ID 0092-12-02) field core sample set

Roadway Aggregate | NMAS Design PG RAP/RAS
Type (mm) ESALs Grade Content

USH 41 Gravel 19.0 E-10 58-28 8%

USH 41 Gravel 12.5 E-3 58-28 17%

USH 41 Gravel 12.5 E-10 58-28 8.5%

USH 41 Gravel 25.0 E-1 58-28 13%

Additionally, data collected from an earlier Wisconsin Highway Research Program (WHRP)
project and as part of the Asphalt Research consortium was also used in the analysis and
modeling effort conducted in the present study. Sample characteristics for the field cores are
given in Table 7 (WHRP0092-12-02, 2011). Samples originated from a variety of roadways
from counties across Wisconsin.

Table 7. Characteristics of the WHRP field core sample set

Aggregate NMAS Design PG
Roadway County Type (mm) ESALs Grade
us 8 Oneida Gravel 12.5 E-3 58-28
usS 18 lowa Limestone 12.5 E-3 64-22
us 18 Milwaukee Limestone 12.5 E-3 64-22
STH 32 Racine Limestone 19.0 E-3 64-22
STH 33 La Crosse Limestone 19.0 E-1 58-28
IH 39 Marquette Gravel 12.5 E-10 58-28
IH 39 Portage Gravel 12.5 E-10 58-28
us 41 Fond du Lac | Limestone 12.5 E-30 64-22
STH 44 Fond du Lac Limestone 12.5 E-1 58-28
US 45 Langlade Gravel 12.5 E-3 58-28
US 53 Chippewa Gravel 12.5 E-10 58-28
US 53 Chippewa Gravel 19.0 E-10 58-28
US 53 Chippewa Gravel 25.0 E-10 58-28
US 53 Trempealeau | Limestone 12.5 E-3 64-22
STH 57 Brown Limestone 125 E-3 58-28
STH 59 Waukesha Limestone 19.0 E-3 64-22
STH 60 Richland Limestone 19.0 E-1 64-22
STH 60 Washington Gravel 19.0 E-10 64-28
STH 67 Waukesha Limestone 19.0 E-1 58-28
STH 70 Vilas Gravel 12.5 E-1 58-28
STH 77 Ashland Gravel 12.5 E-1 58-28
STH 96 Waupaca Limestone 12.5 E-3 58-28
STH 153 Marathon Gravel 12.5 E-3 58-28
STH 181 Milwaukee Limestone 12.5 E-10 64-22
STH 181 Milwaukee Limestone 19.0 E-10 64-22

Note: US: US Highway. STH: State Trunk Highway, IH: Interstate Highway
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Furthermore data collected during the ARC project from field site locations across Dane
county was added to the dataset, as shown in Figure 12. Mix design information, site access,
and material sampling assistance were provided by four local contractors. Researchers
collected friction data at the project locations. Participating contractors largely dictated the
location of field evaluations used in this dataset.
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Figure 12. Locations of field test sites in Dane County.

Selected sites comprised a range of mixture design characteristics, which are expected to
manifest in a wide spectrum of surface texture properties. At each field site, researchers
used the five test methods described previously to evaluate pavement surface texture and
frictional characteristics. These sites encompassed low-volume roads and parking lots in
order to reduce traffic interruptions and to ensure the safety of the field evaluation crew. At
each site, the field evaluation crew demarcated two data collection zones and followed
standard American Society for Testing and Materials (ASTM) procedures to collect a
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sufficient number of samples (ASTM E1911 2009, ASTM E2157 2009). Data collected
from each zone is averaged to obtain an aggregated site value. CTM and SLP tests, among
other tests, were conducted in these locations.
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CHAPTER 4. RESULTS AND ANALYSIS

Selection of Laboratory Texture Analysis Parameter

An important prerequisite of input variables used for both statistical and artificial neural
network (ANN) modeling to predict pavement texture/friction characteristics is statistical
independence of the input variables. As previously discussed, the SLP provides three output
parameters, the mean profile depth (MPD), Ltx2-4, and Lyxas-32 (as defined by equation 6). In
order to make an appropriate selection of parameters to be used for modeling purposes in
the present study, statistical correlations were developed between the aforementioned laser
output parameters, as shown in Figure 13. The results show that strong statistical
correlations exist between all three possible pairs of parameters, indicating that no more
than one of these parameters is necessary to be used in any given modeling process. Thus
MPD was selected for subsequent analysis and modeling purposes, in part due to the relative
simplicity of establishing physical relationships between this parameter and friction and
mixture design parameters.

The relationship between laboratory measurement of pavement surface texture based on the
mean profile depth parameter (MPD) (measured using the SLP device) and mix design and
volumetric properties was assessed using regression analysis. This statistical model was
based on predominantly aggregate-driven parameters (i.e. NMAS, «, A), resulting in a very
good correlation between model predicted and the SLP-measured MPD values, (R-squared
value of 78%), as shown in Figure 14. As it is shown in the figure, there are three points far
from others. These points are porous asphalt mixtures. By removing these data the R-
squared is reduced to 60 %. It should be noted that by incorporating the data corresponding
to porous mixtures, the effect of aggregate gradation characteristics is magnified due to the
larger range of k and A values, thus when the porous mixtures data are removed and the data
set is reduced to dense graded mixtures, the significance of gradation parameters is reduced.

The magnitude of the statistical parameter, p-value, for each variable used in the regression
model is an indicator of the significance of that variable, with values closer to zero
indicating the highest significance while the significance of values approaching 1.0 is
negligible. The P-values for factors used in regression analysis are shown in Table 8.
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Figure 13. Assessment of statistical independence of Laser Profilometer output
parameters.

Table 8. values for the Statistical Model Parameters

Predictor Coefficient | Standard Error T value P value
Coefficient
Constant 9.467 4.040 2.340 0.036
Gmb -3.197 1.115 -2.870 0.013
Py -0.356 0.315 -1.130 0.278
NMAS 0.085 0.043 1.940 0.074
K 1.354 0.234 5.800 0.000
A -1.476 0.360 -4.100 0.001
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The regression model equation is shown below:
Laser MPD =9.47 - 3.20 Gy, - 0.356 P, + 0.0846 NMAS + 1.35 k- 1.48 A (8)
Where MPD is the mean profile depth in millimeter, Gn, is bulk asphalt mixture density

(g/cm®), Py is the binder percent, NMAS is the nominal maximum aggregate size in
millimeter, k and A are the Weibull distribution parameters.
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Figure 14. Estimated MPD versus measured MPD from SLP device.

Based on the p-value analysis, the model predictions are most dependent on the Weibull
distribution parameters (k and A). These parameters are indicators of the shape of the
gradation curve, thus the high significance of these variables indicates the close dependency
of the pavement friction to the aggregate gradation. The positive coefficient of k and the
negative coefficient of A in the model indicate that increasing k and decreasing A will result
in higher MPD values and thus improved pavement friction.

Higher « values will result in gradations closer to a more one-sized gradation, and further
from the maximum density line, while decreasing A will generally result in finer gradation.
With regards to the trend of A, it hypothesized that what is important is how far the
gradation curve is from the maximum density line, rather than the overall coarseness or
fineness of the gradation. A gradation curve far from the maximum density line on the
coarse side, will likely have a higher MPD compared to a gradation curve which is far from
maximum density line on the finer side. To prove this hypothesis, the gradation curves of
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the mixtures in this study are compared with the maximum density line in Figure 15. It is
observed that all gradation curves fall above the maximum density line. In such conditions
decreasing the value of A will result in curves further from the maximum density line (i.e.
lower aggregate packing) and thus believed to provide a higher texture. This trend explains
the appropriateness of the negative coefficient of A in equation 8.
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Figure 15. Effect of A on distance of mixture gradation curves from the maximum
density line.

Another aggregate gradation parameter of high significance in the regression model is the
Nominal Maximum Aggregate Size (NMAS), which is the sieve size immediately above the
first sieve retaining more than 10% of the aggregates. The positive coefficient in the model
indicates that gradations with higher NMAS thus generally coarser gradations result in
higher MPD and subsequently increase the texture.

This model is also closely related to the bulk specific gravity (Gmp) which signifies the bulk
asphalt concrete density including the air voids. Thus the negative coefficient of G, in the
regression model indicates that a lower Gy,,, which results in higher porosity, leads to higher
MPD and texture consequently.

Furthermore, a dependency also exists between Py, (i.e. binder content) and MPD, although
the significance is relatively weaker than that of the gradation and density variables. The
negative coefficient indicates that lower Py will increase the expected texture, possibly by
reducing binder film thickness around aggregates as well as reducing the aggregate packing
level in mixture during compaction.

To verify the results from the regression analysis, ANN modeling was performed using the
same dataset. For this model, the input variables were selected as G, Py, NMAS, « and A
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based on statistically significant contibutors to prediction of e MPD, predictions were
compared to actual MPD values from laser measurements. The transfer function used in the
hidden layer was selected to minimize the nodes in hidden layer, in this case the hyperbolic
tangent function, as shown in equation 9.

X_ g—X

(9)

e
tanhx =
eX+eX

where x is the input (variable).

The network model calibration or "training" data set consisted of 80 % of the data set, while
the remaining 20% were randomly selected for use as model verification (“test” dataset),
and thus were not used for model training. Model optimization was performed using the
training data set to derive the weights of each node connection and the network bias values,
as listed in Table 9. The optimized nodal parameters predicted the training output values
with a high R-squared of 97 %. For model verification, the model was applied to the
randomly selected test dataset which resulted in a relatively good R-squared value of 71 %,
thus verifying the accuracy of the developed ANN model.

Table 9. Weights of Each Nodes in ANN Model Output

Nodes Weight |Nodes Weight |Nodes Weight
N1L1-N1L2 1.7564 |N3L1-N3L2 |-0.0857 |N1L2-N1L3 -3.4413
N1L1-N2L2 2.2794 |N3L1-N4L2 1.9725 |N2L2-N1L3 3.4841

N1L1-N3L2 -0.9449 IN4L1-N1L2  [2.9717 |N3L2-N1L3 1.4798
N1L1-N4L2 -0.2728 |[N4L1-N2L2  |0.7685 |N4L2-N1L3 -3.5754
N2L1-N1L2 -1.0398 |N4L1-N3L2  |-1.5427 |Bl-N1L2 1.4369
N2L1-N2L2 -3.7149 INAL1-N4L2  |-4.6293 |Bl-N2L2 0.2504
N2L1-N3L2 0.0439 |NSL1-N1L2  |-0.1939 |Bl-N3L2 0.2228
N2L1-N4L2 -1.3159 |NS5L1-N2L2  |-1.5465 |Bl-N4L2 -1.2515
N3L1-N1L2 -0.7391 |N5L1-N3L2  [0.587  [B2-N1L3 0.5153

N3L1-N2L2 2.8365 |NSL1-N4L2  [1.4941

Relating Field Friction Tests to Laboratory Laser Measurements

In order to develop a relationship between field and laboratory friction measures, the smooth
tire friction number (FN) measured at 65 km/hour was used. Field measured values of CTM
and SLP MPD is used to develop relation between texture measurement results and friction
(i.e. FN). Using this data and the developed database in this study, the relationships shown
in Figure 16 are observed. This leads to the use of a three-step process for relating SLP
measured MPD to field FN, as is discussed below.
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Figure 16. (a) Relationship between CTM MPD from field and SLP MPD from
laboratory; (b) Relationship between smooth-tire Friction Number from field and
CTM MPD.

First using the strong relationship between CTM-measured MPD from field and the SLP-
measured MPD from laboratory compacted loose mix samples developed in Figure 16(a),
equation 10 was derived, by setting a zero intercept:

CTM MPD = 0.98 x (SLP MPD) (10)

Where:
e CTM MPD is the mean profile depth (mm) measured using the CTM in the field,
e SLP MPD is the mean profile depth (mm) measured using the laser profilometer in
the laboratory.

In the second step, a significant nonlinear relationship was established between FN and the
CTM MPD (Figure 16(b)), resulting in equation 11:

FN = 30.362 X In(CTM MPD) + 54.912 (11)
Where:
e FN is the smooth-tire friction number from field measurements,

e CTM MPD is the mean profile depth (mm) measured using the CTM in the field.

Finally by combining the two relationships, laboratory SLP MPD measures were directly
related to the field FN results. The resulting relationship is shown in equation 12:

FN = 30.362 x In(SLP MPD) + 54.299 (12)
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Where:
e FN is the smooth-tire friction number from field measurements,
e SLP MPD is the mean profile depth (mm) measured using the laser profilometer
in the laboratory.

The relationship derived in equation 12 shows how laboratory measures can be directly
related to field friction values, with the positive coefficient of the SLP MPD parameters
indicating that increasing texture mean profile depth will results in increased field friction.
Furthermore, extending the direct strong relationships observed in Figure 13(a) and (b), it
can be further inferred that increasing Lyxz.4 and Lxs-32 Will also result in increasing field
friction numbers. Thus using the relationships developed in this study in which mixture
design parameters (i.e. volumetric and aggregate gradation properties) were related to
laboratory texture measures, one may consequently adjust the pavement mixture design in
the laboratory to achieve target texture and field friction measures.
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CHAPTER 5. FINDINGS AND RECOMMENDATIONS

SUMARY OF FINDINGS

In this study, statistical and artificial neural network modeling was performed using surface
texture and friction parameters measurements from laboratory- and field-based devices
including the Stationary Laser Profilometer (SLP), Circular Track Meter (CTM) and
Locked-wheel smooth tire device. The following findings have been observed:

e Using statistical analysis and artificial neural network modeling, mixture design
parameters (i.e. volumetric and aggregate gradation properties) could be related to
laboratory texture measurements (MPD). Therefore, knowing mixture design
properties can lead to the estimation of road texture parameters.

e It is shown that pavement texture is mainly controlled by aggregate gradation and
mixture volumetric characteristics. Additionally, it was shown that increasing the
distance of the gradation curve from the maximum density line is more important
than the overall coarseness or fineness of the gradation in terms of increasing the
expected texture.

e Laboratory measured friction parameters (MPD) can be related to field friction
values (FN) using regression analysis.

e Utilizing the models developed in this study, by further investigation, mixture
designers can have a guideline to estimate friction.

e Models developed in this study showed that the measurements for field and
laboratory compacted samples from SLP device can be used to estimate friction
parameters.

RECOMMENDATIONS FOR FUTURE WORK

Because the models developed in this study utilized a limited data set, more mixes are
needed to verify the models and validate the model coefficients. While the data set presented
here is encouraging, disseminating the SLP device specification and analysis method to
other research labs may improve the method.

Additional model parameters may allow for improved estimation of texture characteristics,
however, further experimentation on laboratory samples with controlled gradations is
necessary for establishing clearer relationships between lab and field compacted texture
characteristics. Additionally, a comprehensive study can show the effect of polishing and
aggregate wearing in field on tire-pavement friction throughout pavement life.
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APPENDIX A: SLP ANALYSIS METHOD TEMPLATES

A B c D E F G H I J K L M N
1 LML L1 TV MUl Ly [ NTIT R A AR LU
2 profi_rep1 | prof2_rep1 | prof3_rep1 | prof4_rep1 | prof5_rep1 | profl_rep2 | prof2_rep2
3 89995 0 89721 65012 9.0076 70 8.9359 69 9.0525 69 89303 71 89802 67
- 89914 29 89721 65011  9.0232 69 9.0051 68 9.0091 68 89484 70 9.0082 66
5 89852 28 89478 65010 9.0014 68 101012 67 8.9633 67 89446 69 9.0001 65
[ 8939 27 89471 65009 9.0028 67 101012 66 8.9995 66 89185 68 9.0051 64
7 8.9291 26 89397 65008 9.0219 66 9.4862 65 8.9989 65 89241 67 9.0045 63
8 89297 25 B.9397 65007 9.0475 65 9.4899 64 §.997 64 89353 66 89933 62
9 89328 24 89615 65006 9.0593 64 94837 63 89951 63 8934 65 89989 61
10| 8.9422 23 B.OBB3 65005 9.0543 63 9.4824 62 89864 62 89266 64 9.0051 B0
11| 89565 22 89615 65004 9.0562 62 101012 61 89957 61 89228 63 9.0026 59
12 | 89459 21 89552 65003 9.0369 61 89235 60 9012 60 8.926 62 89951 58
13 | 8.9503 20 89471 65002 9.0244 60 89322 59 B8.9926 53 89203 61 8.9764 57
14 | B8.9559 19 89471 65001 9.0282 59 89434 58 89789 58 89197 60 8.9403 56
15| B8.9584 18 89471 65000 9.0412 58 8.9284 57 89789 57 89135 59 89453 55
16 | B8.9446 17 89615 64999 90543 57 89191 56 9.002 56 8.9154 58 89989 54
17 | 89216 16 89353 64998 9.0842 56 8.9147 55  9.0007 55 89085 57 89546 53
18 | 89372 15 B8.8992 64997 91104 55 89216 54 90014 54 8.911 56 8939 52
19 | 8.9054 14 88593 64996 9.1123 54 8.949 53 9.0232 53 8.9098 55 8.8979 51
20 8.926 13 B8.8655 64995 9.10M 53 8.9665 52  9.0506 52 8.9303 54 89079 50
21| 8.9484 12 88761 64994 91023 52 8.9652 51  9.0456 51 8.9509 53 8.9098 49
22 | 89091 11 101012 64993 9111 51 89316 50 9.0462 50 8.9203 52 89197 48
23| 8.8979 10 101012 64992 9.1304 50 8.9048 49  9.0462 49  8.9098 51 8.9328 47
24 | 8.9066 9 101012 64991 9.1079 49 8.8773 48 9.0419 48 8.9154 50 8.9439 46
25| 89752 8 8.9185 64990 9.0536 48 8.878 47  9.0294 47  8.9197 49  8.9548 45
4k b £ MPD SUMMARY TNV 1N PN s (0B 4006 COND STAT1 PROF1 repl ali:

Figure 17. Screenshot. SLP raw data processing template.
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A B 5 D H F G H J K L W N 0 P Q R 5
1
2 RAWY TRANSFORMED DATA INVERSION AND DROPOUTS RESAMPLED 2:1

i Inverted Z (Z, No Dropouts |Z, No Dropouts | Dropout Z No

Corrected Z X (mm) L Imm;m 2:_ Shift Ir:oml Coﬁt Dropouts X

3 Raw Z (mm) (mm}) {mm) (mm)
4] o 8.9995 36.0 0.0867 240 24.00 24.00 0 240344] 0133
5 1 8.9914 36.0 01333 240 24.03 0 24244 0267 Frequency (Hz) 1250 2 imeerted Profik
6| 2 8.9852 353 0.2000 241 24.06 0 242812 0400 |[Measuring Speed (m/s)|  0.037
7 3 2939 358 0.2667 242 24.24 0 242312[ 0533 Ax (points/mm) 15 2%
8| 4 8.9291 357 03333 243 24.28 0 242164 0667 Point Count 8192
3 5 8.9297 357 0.4000 243 24.28 0 241764[  0.800 Dropout Count 59 2 N T T
10 6 8.9328 357 0.4867 243 24.27 0 242216[ 0933 Dropout Rate 0.7%
1| 7 8.9422 358 05333 242 2423 0 242512(  1.067 Required Points 8192 2
12 8 8.9565 358 0.6000 242 2417 0 24206 1.200 Trimmed Points 0 || ||
13 9 8.9459 358 0.6867 242 2422 0 243636 1333 Inversion Threshold 60 0 " " ; " "
14| 10 8.9503 358 07333 2437 2430 0 243736 1487 Dropout Threshold 20 o 0 00 300 400 S0 &0
15 11 8.9559 358 0.8000 242 2418 0 239996 1600 Shift (mm) 0
16 12 8.9584 358 0.8867 242 2417 0 238972 1733 - -
17 13 5.9446 358 05333 242 422 0 242738 1887 Trimmed Profile
18 14 8.9216 357 1.0000 243 2431 0 238272( 2000
19 15 8.9372 357 1.0867 243 2425 0 237752 2133 %
20| 16 8.9054 356 11333 244 2438 0 237928 2267
21 17 2926 357 1.2000 243 24.30 0 238872 2400 22
22 18 8.9484 358 1.2667 242 2421 0 242488 2533
23] 19 8.9091 356 13333 244 2436 0 242812 2667 z
24 20 8.8979 356 1.4000 244 24.41 0 242288 2800 . . . . . . .
25 8.9066 356 1.4867 244 2437 0 242412 2933 ° 100 200 300 400 500 €00
26| 22 8.9752 353 15333 241 24.10 0 24234 3067
27 23 9.0001 1.6000 240 24.00 0 241692 3200
28| 24 8.9901 16867 240 24.04 0 242116) 3333
29 25 24.00 0 242264  3.467
30 24.11 24.11 0 241818)  2.600
TR WP 4096 COND STAT1_PROF1_repl

Daarhe |

Figure 18. Screenshot. SLP data conditioning template.
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| Use this template for field sections

baseline [m]) 0546
N 4096
Analysis Az [m] 0000133
Inputs Af_, 1831
13 0.BE. Maz [m 364
0.B. Maz [mm]) 109.2
—— b, 2 3E-07
- b, 0.02
i Iw; 0.94
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Windowing SCBW low 110
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Al Lyx E
0.5 8.2 | 0.0%
Dotave 1 40.7 [ K1
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e e —
Pa'[al_"::;e's 16 W7 | o7
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Figure 19. Screenshot. SLP data analysis template inputs.
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Figure 20. Screenshot. SLP data analysis template outputs.
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FVY P30 PR FIY FIFY PV [CU (R CN XY TN [N (ORI [NCY [N ) R R (PR ) ) ) S
f."-h-wN—"":“-DDQ"-«IET."-h-wpg—*c‘mm"-lmf.n#ww—*

A B C D E F G H
150 13473-1 Alternative 2 150 13473-1 Alternative 1
f Amplitude | Low Pass Filter | High Pass Filter | Low Pass Filter | Amplitude | Low Pass Fiter | Slope Supression
(mm} (mm} @ x=20 mm (@ A=50 mm @ A=2.5 mm (mm) @ x=2.5 mm (Regression)
0.000 24.00 -24.00 -24.15 -24.15
0.067 24.02 -24.02 -24.18 -24.18
0.133 2403 -24.03 -24.18 -24.18
0.200 24.08 -24.08 -24.18 -24.18
0.267 2412 -24.12 -2417 -24.17
0.333 2415 -24.15 -2417 -24.17
0.400 2417 -24.17 -24.17 -24.17
0.4587 2418 -24.18 -2417 -24.17
0.533 2418 -24.18 -24.17 -24.17
0.500 2418 -24.18 -2417 -24.17
0.867 2418 -24.18 -2417 -24.17
0.733 2418 -24.18 -24.17 -24.17
0.800 2418 -24.18 -2417 -24.17
0.867 2418 -24.18 -24.17 -24.17
0933 2419 -24.1% -2417 -24.17
1.000 2420 -24.20 -2417 -2417
1.087 2421 -24.21 -24.17 -24.17
1.133 241 -24.241 -2417 -24.17
1.200 2421 -24.21 -24.17 -24.17
1.267 24322 -24.22 -2417 -24.17
1.333 24323 -24.23 -2417 -2417
1.400 2423 -24.23 -24.17 -24.17
1.487 24323 -24.23 -24.18 -24.18
1.533 2422 -24.22 -24.18 -24.18
1.500 2421 -24.21 -24.18 -24.18
1.867 2420 -24.20 -24.18 -24.18
1.733 2420 -24.20 -24.18 -24.18
1.800 2420 -24.20 -24.18 -24.18
1.867 2420 -24.20 -24.18 -24.18
1.933 2420 -24.20 -24.18 -24.18
2.000 2418 -24.18 -24.18 -24.18
2.087 2417 -24.17 -24.18 -24.18
2133 2418 -24.15 -24.18 -24.18

Figure 21. Screenshot. MPD data analysis template.
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Mean Profile Depth Calculation (mm)

First Half of Segment (A)

Baseline Length 100 mm
Alternative 1 0.33
Alternative 2 0.33

Second Half of Segment (B)

Baseline Length 100 mm
Alternative 1 0.34
Alternative 2 0.33

Average MPD Value

Alt1 (150 13473-1) 0.33
Alt 2 (150 13473-1) 0.33
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